
VisiQuest MANUALS

Programming Services Volume 3
GUI/Visualization Services

AccuSoft Corp.
www.accusoft.com

Program Services Volume III

Chapter 1

Introduction

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 1 - Introduction

A. Introduction To GUI & Visualization Services

There are eight libraries in VisiQuest 2001 that are based on X Windows. These libraries are available for use
by xvroutines, and together provide the VisiQuest 2001 GUI and Visualization Services. The libraries in the
GUI and Visualization Services rely on X Windows (X11R5 or X11R6), and the X Intrinsics Toolkit.

GUI and Visualization Services supports the creation and display of self-contained, self-maintaining visual and
GUI objects. An object in this context is an abstract identifier; it may be actualized as a widget provided by
one of the supported widget sets, or as a widget or gadget written specifically for VisiQuest 2001.

A widget is defined by Nye and O’Reilly 1 as "a pre-built user interface component." Such a GUI component
is understood to have its own dedicated window. It is self-contained and self-maintaining. It automatically
takes care of refreshing itself, resizing itself, and other "personal appearance" tasks; it knows how to deal with
user input and, if applicable, has a predefined method of output.

The widgets used by GUI and Visualization Services have been written specifically for VisiQuest 2001. Some
VisiQuest 2001 widgets have been written to support very specialized capabilities needed in visual objects;
among many others, these include the image, zoom, pseudocolor, and animation widgets.

A gadget is defined by Nye and O’Reilly 2 as a "simplified widget which does not create a window." A num-
ber of the visual objects offered by GUI and Visualization Services are gadgets which were written specifically
for VisiQuest 2001. Examples of such gadgets include plots, axes, lines, and circles. In each case, the specific
gadget is generalized as a visual object.

The differentiation between a visual object and a GUI object is determined more by the use of the object than
by any particular characteristic of the object itself. Visual objects are used for the display of graphics, images,
annotations, plots, colormaps, and other types of data. In contrast, GUI objects provide mechanisms on a GUI
that perform a specific I/O task, such as buttons, scrollbars, and lists.

Since GUI and Visualization Services must provide a consistent, abstract interface to objects that may be
instantiated as either widgets or gadgets, it is necessary to use a common data type to implement the abstract
application programming interface. The xvobject is the data type that represents 3 both GUI or visual objects.
It hides the fact that a particular object might be instantiated as either a widget or a gadget. All functions that
handle GUI and visual objects take the xvobject data type as the internal representation of the object. The call-
ing application should not change, manipulate, or even see the contents of the underlying data structure.

1 X ToolKit Intrinsics Programming Manual, by Adrian Nye and Tim O’Reilly
2 X ToolKit Intrinsics Programming Manual, by Adrian Nye and Tim O’Reilly
3 This technique is used by several different libraries in VisiQuest 2001 for the same reason; for

example, the kobject used by Data Services and the (differing) kobject used by the data transport
mechanism. By convention, abstract data types that are to be hidden from the calling application are
called "kobject" if they are not related to visual display; "xvobject" if they are related to visual object.

1-1

Introduction Program Services Volume III - Chapter 1

These are the eight libraries that make up GUI and Visualization Services:
• The xvwidgets library (libxvw.a, libxvw.so) of the Design toolbox
• The xvobjects library (libxvobj.a, libxvobj.so) of the Design toolbox
• The xvimage library (libxvi.a, libxvi.so) of the Envision toolbox
• The xvplot library (libxvp.a, libxvp.so) of the Envision toolbox
• The xvannotations library (libxva.a, libxva.so) of the Envision toolbox
• The xvlang library (libxvl.a, libxvl.so) of the Imagine toolbox
• The xvforms library (libxvf.a, libxvf.so) of the Design toolbox
• The xvutils library (libxvu.a, libxvu.so) of the Design toolbox

Each library has its own chapter in this volume of the Program Services Manual.

The X Toolkit

X Windows

xvwidgets xvobjects

xvutilsxvforms xvimage xvlang xvplot xvannotations

xvwidgets

Figure 1: Diagram depicting the relationship between libraries in VisiQuest Programming Services, X
libraries, and the different supported widget sets.

A.1. The xvwidgets Library

The xvwidgets library is the lowest level library; the other five libraries all depend on routines available in
xvwidgets. This library contains a number of routines that are front ends to the X Toolkit, which should be
called by the application instead of the X Toolkit calls, in order to ensure that an application will support all
three widget sets. Callbacks, event handlers, action handlers, timeouts, and input handlers are all installed on
GUI and visual objects using the xvwidgets library. Characteristics of GUI and visual objects are controlled by
setting and retrieving attributes using functions provided by the xvwidgets library. Consistent use of the xvwid-
gets library ensures that xvroutines will have a standard of functionality and a familiar method of operation
regardless of whether a particular object being used is instantiated as a widget or a gadget.

The xvwidgets library also contains basic GUI objects that are the VisiQuest 2001 versions of the most com-
mon widgets, such as the button object, the label object, the text dialog object, the scrollbar object, the list
object, the menu object, the menubutton object, and the viewport object.

A key element of the xvwidgets library is the VisiQuest 2001 Manager object, which supports the direct manip-
ulation of GUI and visual objects. Moreover, the manager object allows objects to display internal menuforms.
These menuforms allow the user to set attributes of the objects without additional support from the calling pro-
gram.

1-2

Introduction Program Services Volume III - Chapter 1

rowcol viewport button

menubutton

menu scrollbar

composite

manager widget

constraint

core

widgets in the xvwidgets library

list text

Figure 2: This is the inheritance tree of the GUI objects in the xvwidgets library that are implemented as
widgets. The Core, Composite, and Constraint widgets are provided by the X Toolkit; the rest of the wid-
gets are provided by the xvwidgets library.

rect object

manager gadget

label separatorpixmap

gadgets in the xvwidgets library

Figure 3: The inheritance tree of the GUI objects in the xvwidgets library that are implemented as gad-
gets. The Rect object is provided by the X Toolkit; the rest of the gadgets are provided by the xvwidgets
library.

A.2. The xvobjects Library

The xvobjects library also contains GUI objects that were written specifically for VisiQuest 2001. While the
xvwidgets library supports the most general and commonly-used objects, the xvobjects library contains GUI
objects that are more specific in nature. They hav e a variety of purposes, but all deal with I/O rather than
image or graphics display. Some of these support application reporting, specifically the info object, warn

1-3

Introduction Program Services Volume III - Chapter 1

object, and error object. The help object is used for display of online help pages. Other objects are used to
obtain user input of a particular type, such as the inputfile, outputfile, float, integer, and double objects. Other
objects provided meet various needs of VisiQuest 2001 application graphical user interfaces, such as the con-
nection object which is used by VisiQuest to connect glyphs, the console object which is used by both
VisiQuest and Craftsman to echo output of spawned processes, or the notifywindow object which is used by
many VisiQuest 2001 applications to indicate when the program is "working."

composite

core

constraint

info double float textinputinputfile

integer

canvas text display

notify window help

browser layout

error

warn outputfile

widgets in the xvobjects library

manager widget

viewport

Figure 4: This is the inheritance tree of the GUI objects in the xvobjects library that are implemented as
widgets. The Core, Composite, and Constraint widgets are provided by the X Toolkit; the manager wid-
get and the viewport widget are provided by the xvwidgets library; the rest of the widgets are provided by
the xvobjects library.

rect object

manager gadget

pixmap

gadgets in the xvobjects library

connection

Figure 5: The inheritance tree of those GUI objects in the xvobjects library that are implemented as gad-
gets. The Rect object is provided by the X Toolkit; the manager gadget is part of the xvwidgets library;
the other gadgets are provided by the xvobjects library.

1-4

Introduction Program Services Volume III - Chapter 1

A.3. The xvimage Library

The xvimage library provides utilities with which you may create and display images in a number of ways.
These include the pan icon, the zoom widget, and the animation object, among others. There are also a num-
ber of objects with which you may examine and modify the colormap of an object. The threshold object, the
pseudo object, the palette, and the colorcell are among them. The objects in the xvimage library are all wid-
gets.

graphics

constraint

composite

core

manager widget

area color

animate panicon zoomimageicon

image colorcell printpixel printmapvalpseudo palettethreshold

widgets in the xvimage library

Figure 6: The xvimage library offers a variety of visual objects for image display. This diagram shows
the inheritance tree of those visual objects in the xvimage library; they are all implemented as widgets.
The Core, Composite, and Constraint widgets are provided by the X Toolkit. The rest of the widgets are
provided by the xvisual library, except for the manager and the rowcol widget, both of which are con-
straint widgets found in the xvwidgets library. Note that the color class (depicted with dashed lines) serves
only to allow subclassing by other objects; it cannot be created as an object directly.

A.4. The xvannotations Library

The xvannotations library provides utilities with which you may create and display visual objects which
would typically be classified as annotations. These include such primitives as lines, circles, and rectangles.
The objects in the xvannotations library are all gadgets.

1-5

Introduction Program Services Volume III - Chapter 1

rect object

manager gadget

graphics

polylinemarkerlineindicatorstring rectangle

position stringvalue

timer

date textstring

gadgets in the xvisual library

Figure 7: The inheritance tree of those visual objects in the xvannotations library, which are all imple-
mented as gadgets. The Rect object is provided by the X Toolkit; the rest of the gadgets (with the excep-
tion of the manager gadget, provided by the xvwidgets library) are provided by the xvannotations library.
Note that the graphics class and the color class (depicted with dashed lines) serve only to allow subclass-
ing by other objects; they cannot be created as objects directly.

A.5. The xvplot Library

The xvplot library provides utilities with which you may create and display plots and axes. The gadgets pro-
vided include the 2D axis object and the 2D plot object.

1-6

Introduction Program Services Volume III - Chapter 1

rect object

graphics

axis2D color

plot 3Dplot2D

axis3D*

manager gadget

axis indicator

gadgets in the xvplot library

Figure 8: The inheritance tree of the gadgets in the plot library that are implemented as gadgets. The
Rect object is provided by the X Toolkit; the rest of the gadgets are provided by the xvplot library. Note
that the graphics class (depicted with dashed lines) serves only to allow subclassing by other objects; it
cannot be created as an object directly.

A.6. The xvlang Library

The xvlang library of VisiQuest 2001 supports an object- oriented approach to the design and implementation
of visual programming languages. The visual programming objects offered by the xvlang visual programming
toolkit are used in the VisiQuest 2001 visual programming language, VisiQuest.

The visual programming language toolkit offered by the xvlang library follows an object-oriented approach to
the design and development of visual programming languages. Use of the visual programming objects avail-
able in the toolkit allows flexibility and reusability to experiment with different visual programming
paradigms, and offers the possibility of adapting existing models to meet the needs of new visual languages.

By providing a visual programming object which addresses each key component of the visual programming
environment, xvlang decouples the complexity of those visual programming components from the visual pro-
gramming environment itself. This allows the developer of the visual programming language to concentrate on
the visual programming paradigm to be developed, rather than on the functionality of the various components
necessary to the language.

1-7

Introduction Program Services Volume III - Chapter 1

workspace

canvas

viewport

core

composite

constraint

toolbox menucommand bar

rowcolfinder list

loop procedureconditional

glyphextport

manager widget

node toolbox list

widgets in the xvlang library

Figure 9: The xvlang library provides visual objects specifically for use by visual languages. They are
used by cantata, and are made publically available to developers. This diagram shows the inheritance tree
of those visual objects in the xvlang library which are all implemented as widgets. The Core, Composite,
and Constraint widgets are provided by the X Toolkit. The manager widget, rowcol object, and viewport
object are part of the xvwidgets library, while the canvas object is found in the xvobjects library. The rest
of the widgets depicted are provided by the xvlang library.

A.7. The xvforms Library

The xvforms library provides all the functionality necessary to create and maintain the Graphical User Inter-
face (GUI) of an application, where that GUI is defined by a User Interface Specification (UIS) file. The main
GUI drivers with the minimum number of correct calls to the xvforms library are automatically generated for
an xvroutine; thus, it is not necessary to construct the GUI driver of an xvroutine from scratch. However, calls
to some routines available in the xvforms may be added frequently to an application, such as calls to
xvf_set_attribute(), which allows the xvroutine to modify its GUI during runtime.

1-8

Introduction Program Services Volume III - Chapter 1

 User Interface Specification File

xvforms library

Graphical User Interface

Figure 10: The main purpose of the xvforms library is to take a UIS file and create the GUI that it defines.
It runs and maintains the GUI; the application may dynamically change its GUI with a call to
xvf_set_attribute().

A.8. The xvutils Library

The xvutils library contains a number of utility functions which are generally used to augment the GUI created
with the xvforms library. These utilities are all which are compound combinations of GUI and visual objects
that either prompt the user for information, or display information until they are acknowledged. Such utilities
are commonly used by xvroutines, and include such items as file browsers, list objects, pop-up error messages,
and file display objects.

1-9

Introduction Program Services Volume III - Chapter 1

query popup list popup select popup file browser file viewer

online helperror popupwarn popup

dialogs in the xvutils library

Figure 11: The xvutils library provides a number of utility functions that produce popup dialogs for use
with VisiQuest xvroutines. Some prompt for information (those on the bottom row), while others simply
require acknowledgement (those on the top row). All appear in popup windows that are independent from
the GUI of the application; most block for input.

1-10

Table of Contents

A. Introduction To GUI & Visualization Services 1-1
A.1. The xvwidgets Library . 1-2
A.2. The xvobjects Library . 1-3
A.3. The xvimage Library . 1-5
A.4. The xvannotations Library . 1-5
A.5. The xvplot Library . 1-6
A.6. The xvlang Library . 1-7
A.7. The xvforms Library . 1-8
A.8. The xvutils Library . 1-9

- i -

Introduction Program Services Volume III - Chapter 1

This page left intentionally blank

- ii -

Program Services Volume III

Chapter 2

Xvwidgets

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 2 - Xvwidgets

A. Introduction

The xvwidgets (libxvw.a) library is the lowest-level library of the VisiQuest 2001 GUI & Visualization Ser-
vices; it has several functions.

The xvwidgets library supports the management of GUI and visual objects. Some GUI and visual objects are
instantiated as widgets, meaning that they hav e their own dedicated window. Other GUI and visual objects are
instantiated as gadgets, or widgets that do not have their own window, but are displayed on their parent’s win-
dow. The X Toolkit provides solid support for widgets; support for gadgets, however, is not as well developed.
To the VisiQuest Toolbar, howev er, the differences between widgets and gadgets are minimized or eliminated
altogether with the application programming interface provided by the xvwidgets library. The same xvwidgets
routines are used to add callbacks, event handlers, action procedures, input handlers, and timeouts on all GUI
and visual objects, regardless of whether they are implemented as widgets or gadgets.

Xvwidgets contains the most basic of the GUI objects, which are most frequently seen on VisiQuest 2001
Graphical User Interface (GUI). These include the VisiQuest 2001 Manager object as well as the button, label,
list, me nu, menubutton, pixmap, rowcol, scrollbar, text, and viewport objects.

The most specialized widget supported by GUI & Visualization Services is the VisiQuest 2001 Manager wid-
get. Use of the Manager widget by the applicatio n program allows the user to have direct control over the
internally-defined attributes of the GUI and visual objects, without intervention on the part of the application.
In addition, the manager object allows direct manipulation of both GUI and visual objects which are its chil-
dren. This makes it possible for an application to incorporate a significant amount of graphical and image dis-
play, and to provide complete support for the interactive modification of all the attributes associated with the
objects displayed, with only a few lines of code.

Functions for GUI object creation

• xvw_create_button() - create a button object
• xvw_create_label() - create a label object
• xvw_create_list() - create a list object
• xvw_create_manager() - create a VisiQuest Manager object
• xvw_create_menu() - create a menu object
• xvw_create_menubutton() - create a menubutton object
• xvw_create_pixmap() - create a pixmap object
• xvw_create_rowcol() - create a row-col object
• xvw_create_scrollbar() - create a scrollbar object
• xvw_create_text() - create a text object
• xvw_create_viewport() - create a viewport object

As implied above, another critical function of the xvwidgets library is to mediate between the application and
the X Toolkit when necessary. There are a number of utility routines in the xvwidgets library that are front
ends for X Toolkit functions. Whenever available, these functions must be called instead of their X Toolkit

2-1

Xvwidgets Program Services Volume III - Chapter 2

counterparts, in order to ensure that the application program work properly.

GUI & Visualization Services Function X Toolkit Function

xvw_add_action() XtOverrideTranslations(), XtAugmentTranslations()

xvw_add_callback() XtAddCallback(), XtAddCallbacks()

xvw_add_detectfid() XtAppAddInput()

xvw_add_event() XtAppAddEventHandler()

xvw_add_timeout() XtAppAddTimeOut()

xvw_appcontext() XtAppContext()

xvw_call_callback() XtCallCallbacks()

xvw_check_managed() XtIsManaged()

xvw_check_realized() XtIsRealized()

xvw_check_sensitive() XtIsSensitive()

xvw_check_subclass() XtIsSubclass()

xvw_class() XtClass()

xvw_colormap() DefaultColormap()

xvw_create(), xvw_create_xxx() XtCreateWidget(), XtCreateManagedWidget()

xvw_create_application_shell(), xvw_create_transient_shell() XtAppCreateShell()

xvw_display() XtDisplay()

xvw_destroy() XtDestroyWidget()

xvw_get_attribute(s)() XtGetValues(), XtVaGetValues()

xvw_initialize() XtToolkitInitialize()

xvw_manage() XtManageChild()

xvw_map() XtMapWidget()

xvw_name() XtName()

xvw_parent() XtParent()

xvw_realize() XtRealizeWidget()

xvw_remove_action() XtRemoveActions()

xvw_remove_callback() XtRemoveCallback()

xvw_remove_event() XtRemoveEventHandler()

xvw_remove_timeout() XtRemoveTimeout()

xvw_rootwindow() RootWindow()

xvw_sensitive() XtSetSensitive()

xvw_set_attribute(s)() XtSetValues(), XtVaSetValues()

xvw_translate_coords() XtTranslateCoords()

xvw_unmanage() XtUnmanageChild()

xvw_unmap() XtUnmapWidget()

xvw_unrealize() XtUnrealizeWidget()

xvw_visual() DefaultVisual()

xvw_window() XtWindow()

In addition, there are a number of utility functions that are provided simply for the convenience of the devel-
oper; you are encouraged to become familiar with these functions and use them whenever appropriate.

2-2

Xvwidgets Program Services Volume III - Chapter 2

Av ailable Functions

In alphabetical order, the functions available in the xvwidgets library include:

• xvw_activate_menu() - pop up the internal menuform for an object.
• xvw_activated_menu() - see if the internal menuform for an object is currently mapped
• xvw_add_action() - add an action handler to an object
• xvw_add_callback() - add a callback to a GUI object
• xvw_add_detectfid() - add (fid) input handler to an object
• xvw_add_detectfile() - add a (file) detect handler to an object
• xvw_add_event() - add an event handler to an object
• xvw_add_timeout() - add a timeout to an object
• xvw_appcontext() - return the application context associated with a object
• xvw_busy() - set an object to be busy or not busy
• xvw_check_managed() - see if an object is managed
• xvw_check_mapped() - see if an object is mapped
• xvw_check_menuactive() - see if an object’s internal menuform is displayed
• xvw_check_menuexist() - check if an object has an internal menuform
• xvw_check_realized() - see if an object is realized
• xvw_check_sensitive() - see if an object is sensitive
• xvw_check_subclass() - check the subclass of an object
• xvw_check_toplevel() - see if object specified is a toplevel, or see if a toplevel exists
• xvw_check_visible() - see if an object is visible
• xvw_children() - get the children of an object
• xvw_class() - get the class of the object
• xvw_colormap() - get the colormap associated with a object
• xvw_create() - create a new object
• xvw_create_application_shell() - create an application shell object
• xvw_create_transient_shell() - create a transient shell object
• xvw_destroy() - destroy an object
• xvw_display() - returns the display associated with a object
• xvw_duplicate() - duplicate an object
• xvw_font() - return the font being used by a object
• xvw_fontname() - return the font name being used by an object
• xvw_geometry() - get the geometry of an object
• xvw_get_attribute() - get a single attribute of an object
• xvw_get_attributes() - get attributes from an object (variable argument list)
• xvw_inactivate_menu() - pop down the internal menuform for an object.
• xvw_initialize() - initialize the xvwidgets library
• xvw_insert_event() - insert an event handler into an object’s event list.
• xvw_lower() - lower an object
• xvw_manage() - manage an object
• xvw_map() - map an object
• xvw_name() - get the name of the object
• xvw_numchildren() - get the number of children of an object
• xvw_object() - get the object associated with a particular widget
• xvw_parent() - get the parent of an object
• xvw_place() - place an object on the screen
• xvw_raise() - raise an object
• xvw_realize() - realize an object

2-3

Xvwidgets Program Services Volume III - Chapter 2

• xvw_refresh() - refreshes an object
• xvw_remove_action() - remove an action handler from an object
• xvw_remove_callback() - remove a callback from a GUI object
• xvw_remove_detectfid() - remove (fid) input handler from an object
• xvw_remove_detectfile() - remove a (file) detect handler from an object
• xvw_remove_event() - remove an event handler from an object
• xvw_remove_timeout() - removes a timeout from an object
• xvw_rootwindow() - get the root window associated with an object
• xvw_screen() - return the screen associated with a object
• xvw_screennum() - return the screen number associated with an object
• xvw_sensitive() - sensitize or de-sensitize an object
• xvw_set_attribute() - set a single attribute on an object
• xvw_set_attributes() - set attributes on an object (variable argument list)
• xvw_sort() - sort a list of objects
• xvw_toplevel() - get the toplevel object of an object
• xvw_unmanage() - unmanage an object
• xvw_unmap() - unmap an object
• xvw_unrealize() - un-realize an object
• xvw_visual() - get the visual associated with an object
• xvw_vset_attributes() - set attributes on an object (variable argument list)
• xvw_widget() - get the widget (or gadget) associated with an object
• xvw_window() - get the window associated with an object

A.1. xvw_initialize() — initialize the xvwidgets library

Synopsis
Display *xvw_initialize(

void (*menu_handler)(void))

Input Arguments
menu_handler

specifies the menu handling routines. May be one of:

XVW_MENUS_XVFORMS - Enable use of xvforms as internal menus
XVW_MENUS_NONE - Disable internal menus

Returns
The newly opened display on success, NULL on failure

Description
Opens the display, sets the widget set of choice, and initializes the xvwidgets library prior to use. A
call to this routine must be made before any other calls to routines in GUI & Visualization services are
made.

2-4

Xvwidgets Program Services Volume III - Chapter 2

B. General Attributes Of GUI & Visual Objects

The characteristics of GUI and visual objects that can be specified by the application are called object
attributes. Object resources are pairs of names and values that indicate the current setting of object attributes.
Attributes of GUI and visual objects can be set and retrieved one at a time using xvw_set_attribute() and
xvw_get_attribute(), or can be set and retrieved in groups using the variable-argument xvw_set_attributes() and
xvw_get_attributes() (see the section entitled, "Setting And Getting Attributes").

The xvwidgets library allows certain attributes to be set and retrieved on all visual and GUI objects. When
using general attributes, you have to use your common sense to determine which attributes are applicable to
which objects. Setting or getting a particular attribute is only meaningful if the attribute applies to the object
in question. For example, it should be expected that setting XVW_FONT_NAME on a scrollbar object is mean-
ingless. However, these attributes commonly apply to all or most GUI and visual objects.

B.1. Pixel Geometry

The following attributes are used to specify general object geometry in pixels. All take integer values, and
will take precedence over any counterparts specified in character widths (see "Character Geometry").

Summary of Pixel Geometry Attributes

Attribute Description

XVW_BORDER_WIDTH Specifies the size of the border, in pixels. A value of zero (0) indicates

that no border is desired.

XVW_HEIGHT The height of the object in pixels. Will take precedence over

XVW_CHAR_HEIGHT .

XVW_WIDTH The width of the object in pixels. Will take precedence over

XVW_CHAR_WIDTH .

XVW_XPOSITION The X position with respect to the upper left hand corner of the parent,

in pixels. Takes precedence over XVW_CHAR_XPOS .

XVW_YPOSITION The Y position with respect to the upper left hand corner of the parent,

in pixels. Takes precedence over XVW_CHAR_YPOS .

Descriptions of Pixel Geometry Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_BORDER_WIDTH

(borderWidth)

int 1 values >= 0

XVW_HEIGHT

(height)

int calculated values > 0

XVW_WIDTH

(width)

int calculated values > 0

2-5

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of Pixel Geometry Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_XPOSITION

(xposition)

int 0 values >= 0

XVW_YPOSITION

(yposition)

int 0 values >= 0

B.2. Character Geometry

In many cases involving a visual object that contains text, it is more convenient to specify the geometry of a
object in terms of character size rather than pixels. The actual sizes involved will vary according to the font
being used by the application. The following attributes take float values. They will be over-ridden by their
counterparts specified in numbers of pixels (see "Pixel Geometry").

Summary of Character Geometry Attributes

Attribute Description

XVW_CHAR_HEIGHT The height of the object in characters.

XVW_CHAR_MAX_HEIGHT The maximum height of the object in characters.

XVW_CHAR_MAX_WIDTH The maximum width of the object in characters.

XVW_CHAR_MIN_HEIGHT The minimum height of the object in characters.

XVW_CHAR_MIN_WIDTH The minimum width of the object in characters.

XVW_CHAR_WIDTH The width of the object in characters.

XVW_CHAR_XPOS The X position in characters, with respect to the upper left hand corner

of the parent.

XVW_CHAR_YPOS The Y position in characters, with respect to the upper left hand corner

of the parent.

Descriptions of Character Geometry Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_CHAR_HEIGHT

(charHeight)

float calculated values > 0.0

XVW_CHAR_MAX_HEIGHT

(charMaxHeight)

float calculated values > 0.0

XVW_CHAR_MAX_WIDTH

(charMaxWidth)

float calculated values > 0.0

XVW_CHAR_MIN_HEIGHT

(charMinHeight)

float calculated values > 0.0

XVW_CHAR_MIN_WIDTH

(charMinWidth)

float calculated values > 0.0

2-6

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of Character Geometry Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_CHAR_WIDTH

(charWidth)

float calculated values > 0.0

XVW_CHAR_XPOS

(charXpos)

float 0.0 values >= 0.0

XVW_CHAR_YPOS

(charYpos)

float 0.0 values >= 0.0

B.3. Colors, Fonts, and Cursors

You may set the foreground, background, and border colors using either the name string of a color or a pixel
value. Names of valid color name strings can be found by looking at /usr/lib/X11/rgb.txt, but be aware that the
presence of a color name string in this file does not guarantee that the color will be available on a particular X
server. You can specify the font for visual objects that involve text; cursors can be defined for any visual
object.

Summary of General Attributes

Attribute Description

XVW_BACKGROUND The pixel value that defines the desired color for the background.

XVW_BACKGROUND_COLOR Provide the string that specifies the name of the desired background

color. Will be over-ridden by XVW_BACKGROUND_PIXEL if both are set.

XVW_BACKGROUND_PIXEL See XVW_BACKGROUND it is the same thing.

XVW_BACKGROUND_PIXMAP This is an (optional) pixmap that appears as the background of an

object, instead of the background color. Candidates for the value of

this attribute may be created with the use of XCreatePixmap(); see The

Xlib Reference Manual by O’Reilly and Associates. Note that this

attribute is mutually exclusive with XVW_BACKGROUND_PIXMAPFILE;

specify one or the other, not both.

XVW_BACKGROUND_PIXMAPFILE This is the file defining an (optional) pixmap that appears as the back-

ground of an object, instead of the background color.

XVW_BORDER Provide the pixel value that specifies the desired border color.

XVW_BORDER_COLOR The string that specifies the name of the desired border color. Will be

overridden by XVW_BORDER_PIXEL if both are set.

XVW_BORDER_PIXEL See XVW_BORDER; it is the same thing.

2-7

Xvwidgets Program Services Volume III - Chapter 2

Summary of General Attributes

Attribute Description

XVW_CHAR_XSNAP This attribute only applies to constraint objects, such as manager

objects, canvas objects, rowcol objects, and so on, that support layout

and direct manipulation of children. With interactive movement of

selected child objects, the child objects can be made to "snap" to the

new position, aiding the user in more precise interactive layout of

objects. This attribute specifies, in characters, the horizontal incre-

ments of the implied grid (visible or not) to which children will "snap".

For example, if XVW_CHAR_XSNAP is set to 0.5, then objects will "snap"

to positions in half-character-width increments.

XVW_CHAR_YSNAP This attribute only applies to constraint objects, such as manager

objects, canvas objects, rowcol objects, and so on, that support layout

and direct manipulation of children. With interactive movement of

selected child objects, the child objects can be made to "snap" to the

new position, aiding the user in more precise interactive layout of

objects. This attribute specifies, in characters, the vertical increments

of the implied grid (visible or not) to which children will "snap". For

example, if XVW_CHAR_YSNAP is set to 1.0, then objects will "snap" to

positions in one-character-height increments.

XVW_COLORMAP This is the X11 colormap that is used to display the visual object. Col-

ormaps are discussed in detail in in The Xlib Programming Manual by

Adrian Nye. Note that the application should generally not attempt to

set the colormap; it should instead allow the visual object to choose the

most appropriate colormap.

XVW_CURSOR This attribute specifies the cursor to be used when the pointer is inside

the visual object. The Cursor structure that must be passed for this

attribute can be obtained with XCreateGlyphCursor(), XCre-

atePixmapCursor(), XDefineCursor(), or XCreateFontCursor(). See

The Xlib Reference Manual, by Adrian Nye for definitions of these

XLib calls; Appendix I on "The Cursor Font" may also be helpful.

2-8

Xvwidgets Program Services Volume III - Chapter 2

Summary of General Attributes

Attribute Description

XVW_CURSORNAME A number of standard cursors are made available with X Windows.

The names of these predefined cursors are found in <X11/cursor-

font.h>. The XVW_CURSOR_NAME attribute allows you to specify a

predefined cursor by its name. Accepted cursor names include:

"X_cursor", "array", "based_arrow_down", "based_arrow_up", "boat",

"bogosity", "bottom_left_corner", "bottom_right_corner", "bot-

tom_side", "bottom_tee", "box_spiral", "center_ptr", "circle", "clock",

"coffee_mug", "cross", "cross_reverse", "crosshair", "diamond_cross",

"dot", "dotbox", "double_arrow", "draft_large", "draft_small",

"draped_box", "exchange", "fleur", "gobbler", "gumby", "hand1",

"hand2", "heart", "icon", "iron_cross", "left_ptr", "left_side", "left_tee",

"left_button", "ll_angle", "lr_angle", "man", "middlebutton", "mouse",

"pencil", "pirate", "plus", "question_arrow", "right_ptr", "right_side",

"right_tee", "rightbutton", "rtl_logo", "sailboat", "sb_down_arrow",

"sb_h_double_arrow", "sb_left_arrow", "sb_right_arrow", "sb_v_dou-

ble_arrow", "shuttle", "sizing", "spider", "spraycan", "star", "target",

"tcross", "top_left_arrow", "top_left_corner", "top_right_corner",

"top_side", "top_tee", "trek", "ul_angle", "ul_umbrella", "ur_angle",

"watch", "xterm", and "num_glyphs". See Appendix I of The Xlib Ref-

erence Manual by O’Reilly & Associates for illustrations depicting the

available standard cursors.

XVW_DEPTH This is the number of planes that are to be used to represent grey scales

or color within a visual object. It determined by the visual being used

(see XVW_VISUAL)

XVW_DESTROY If necessary, xvw_add_callback() may be used to install a callback on

any GUI or visual object which will be fired when the object is

destroyed. When calling xvw_add_callback(), pass this attribute

directly, as in

xvw_add_callback(object, XVW_DESTROY,

destroy_cb, client_data);

XVW_FONT The font to be used with any text associated with the visual object. The

XFontStruct that must be passed for this attribute can be obtained with

XLoadQueryFont(); see Section 6.2 of The Xlib Programming Manual

by Adrian Nye. Note that this attribute is mutually exclusive with

XVW_FONTNAME; use one or the other, not both. Av ailable fonts for a

particular workstation can be obtained from the command line with

%xlsfonts, or from an application program with XListFonts().

XVW_FONTNAME This attribute specifies the name of the font to be used with any text

associated with the visual object. A list of the available fonts on a par-

ticular X server can be obtained with the command, "xlsfonts". Fonts

are listed in the "fonts.dir" file in /usr/lib/X11/fonts/misc,

/usr/lib/X11/fonts/75dpi, and /usr/lib/X11/fonts/100dpi. The various

fonts used by X11 are defined in these directories.

XVW_FOREGROUND The pixel value that defines the desired color for the foreground.

2-9

Xvwidgets Program Services Volume III - Chapter 2

Summary of General Attributes

Attribute Description

XVW_FOREGROUND_COLOR Provide the string that specifies the name of the desired foreground

color. Will be over-ridden by XVW_FOREGROUND_PIXEL if both are set.

XVW_FOREGROUND_PIXEL See XVW_FOREGROUND; it is the same thing.

XVW_MAPPED Dictates whether or not the object is mapped. If the object has not been

created, its initial state may be mapped (displayed to the screen imme-

diately) or unmapped (not displayed until explicitly told to be dis-

played, with a call to xvw_map().) If TRUE, this attribute will cause

the object to be mapped; if FALSE, it will delay mapping of the object

until so instructed.

XVW_MENU_CLIENTDATA When xvw_define_attribute is used to define additional attributes of

objects, this is the client data that is sent to the set and get routines.

XVW_MENU_FORM This attribute defines the internal menuform associated with a visual

object. The menuform should include selections appropriate for each

attribute that can be interactively set by the user. Variable names must

be equal to the resource names.

XVW_MENU_FORMFILE This attribute defines the *.pane file which defines the internal menu-

form of a visual object. The *.pane file defining the menuform should

include selections appropriate for each attribute that can be interactively

set by the user. Variable names must be equal to the resource names.

XVW_NAME The name used to identify the object. It is used for specification of

resources in the app-defaults file; in addition, for backplanes it will

appear as the name on the window dressing.

XVW_VISUAL This is the X11 visual being used to display the visual object on a par-

ticular screen. Visuals are discussed in detail | in The Xlib

Programming Manual by Adrian Nye. Note that the application should

generally not attempt to set the visual; it should instead allow the visual

object to choose the most appropriate visual.

Descriptions of General Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_BACKGROUND

(background)

unsigned

long

default bg pixel

(XtDefaultBack-

ground)

any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

XVW_BACKGROUND_COLOR

(backgroundColorname)

char * default bg color any valid color name: see

/usr/lib/X11/rgb.txt or Section 7.1.1 of

The XLib Programming Manual by

Adrian Nye

XVW_BACKGROUND_PIXEL

(background)

unsigned

long

default bg pixel

(XtDefaultBack-

ground)

any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

2-10

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of General Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_BACKGROUND_PIXMAP

(backgroundPixmap)

Pixmap NULL Valid Pixmap structure

XVW_BACKGROUND_PIXMAPFILE

(N/A)

char * NULL The full path to a valid xpm or xbm file,

defining the desired pixmap. Note that the

path may contain $TOOLBOX.

XVW_BORDER

(border)

unsigned

long

None any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

XVW_BORDER_COLOR

(borderColorname)

char * N/A any valid color name: see

/usr/lib/X11/rgb.txt or Section 7.1.1 of

The XLib Programming Manual by

Adrian Nye

XVW_BORDER_PIXEL

(N/A)

unsigned

long

None any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

XVW_CHAR_XSNAP

(charXsnap)

float 1 values > 0.0

XVW_CHAR_YSNAP

(charYsnap)

float 1 values > 0.0

XVW_COLORMAP

(N/A)

Colormap XDefaultColormap() a valid Colormap structure.

XVW_CURSOR

(N/A)

Cursor The cursor of the

parent object

Valid Cursor structure (see description).

XVW_CURSORNAME

(cursorName)

char * N/A Valid cursorfont name (see description).

XVW_DEPTH

(N/A)

int computed according

to XVW_VISUAL

the number of planes supported by the

visual.

XVW_DESTROY

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_FONT

(N/A)

XFontStruct default font see description

XVW_FONTNAME

(fontName)

char * default font see description

XVW_FOREGROUND

(background)

unsigned

long

default fg pixel

(XtDefaultFore-

ground)

any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

2-11

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of General Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_FOREGROUND_COLOR

(foregroundColorname)

char * default fg color any valid color name: see

/usr/lib/X11/rgb.txt or Section 7.1.1 of

The XLib Programming Manual by

Adrian Nye

XVW_FOREGROUND_PIXEL

(foreground)

unsigned

long

default fg pixel

(XtDefaultFore-

ground)

any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

XVW_MAPPED

(mapped)

int TRUE TRUE/FALSE

XVW_MENU_CLIENTDATA

(N/A)

kaddr NULL pointer to the client data

XVW_MENU_FORM

(N/A)

kaddr NULL valid internal menuform structure

XVW_MENU_FORMFILE

(N/A)

char * NULL valid path to *.pane file defining internal

menuform. Use of $TOOLBOX is

encouraged.

XVW_NAME

(N/A)

char * N/A single string with no spaces

XVW_VISUAL

(N/A)

Visual XDefaultVisual(),

or may be deter-

mined according to

the visual object

being used and the

screen on which it

is being dis-

played

a valid Visual structure

C. Toplevel (Shell) Objects

An X11 client, or application program must always create one or more toplevel windows which are children of
the root window. It is the use of a toplevel window that allows an application to work with a window manager;
the window manager affects and interacts with these toplevel windows. If an X application brings up two sepa-
rate displays, each of which is controllable with the window manager, this generally implies that the applica-
tion has two toplevel windows.

The X Toolkit provides a few different kinds of toplevel widgets. VisiQuest 2001 uses application shell wid-
gets and transient shell widgets; these widgets are presented as GUI objects. We will not go into a long expla-
nation of the differences between application shell widgets and transient shell widgets here; more information
on shell widgets can be found in The X Toolkit Intrinsics Reference Manual by Adrian Nye and Tim O’Reilly.
For now, the main displays for VisiQuest 2001 applications will be application shell widgets, while any short-
lived popup windows, such as error messages, will be transient shell widgets.

2-12

Xvwidgets Program Services Volume III - Chapter 2

Toplevels cannot display GUI or visual objects themselves; rather, they hav e a single child, which in
VisiQuest 2001 applications is usually a VisiQuest 2001 Manager widget. The VisiQuest 2001 Manager wid-
get will act as the backplane, or parent, for any GUI or visual objects which are to be displayed by the applica-
tion.

For a VisiQuest 2001 application with a GUI specified by a UIS file, the xvforms library will automatically cre-
ate a toplevel containing a single VisiQuest 2001 Manager widget child. The xvforms library then uses the this
VisiQuest 2001 Manager widget as a parent for all the other GUI objects that are created as part of the graphi-
cal user interface of the application.

It is rarely necessary to add code that will create a toplevel in a classic xvroutine (an xvroutine having a GUI
specified with a *.form file). Sometimes it is desirable to add code that will create a toplevel in a hybrid
xvroutine (an xvroutine without a GUI specified by a *.form file). Since a hybrid xvroutine does not use the
xvforms library to create a GUI, any image or graphical display must be done directly from the hybrid routine;
the first step in this process is to create a toplevel widget with a single VisiQuest 2001 Manager as the child.
The ubiquitous call to xvw_create_manager() will create a default toplevel for you if the parent argument is
specified as NULL; however, it is sometimes preferable to create the toplevel explicitly. Toplevels may be cre-
ated explicitly using the following two functions:

C.1. xvw_create_application_shell() — create an application shell object

Synopsis
xvobject xvw_create_application_shell(

char *name,
Display *display,
Screen *screen)

Input Arguments
name

name for the application shell object
display

the X Display structure; pass NULL to use the default display
screen

the X Screen structure; pass NULL to use the default screen

Returns
returns the application shell object on success, NULL on failure

Description
Creates an application shell object to serve as a toplevel for an application; the toplevel serves as a
mediating device between the application and the window manager. This call allows the application to
have sev eral independant windows, which is the case with xvroutines having multiple subforms. The
routine also supports the creation of toplevels on potentially different screens, which applies when a

2-13

Xvwidgets Program Services Volume III - Chapter 2

VisiQuest application distributes its user interface with the concert program. Both the display and screen
are optional arguments; if either of these are set to NULL, then the default display and default screen
will be used.

C.2. xvw_create_transient_shell() — create a transient shell object

Synopsis
xvobject xvw_create_transient_shell(

char *name,
Display *display,
Screen *screen)

Input Arguments
name

name for the transient shell object
display

the X Display structure; pass NULL to use the default display
screen

the X Screen structure; pass NULL to use the default screen

Returns
the transient shell object on success, NULL on failure

Description
Creates an transient shell object to serve as the toplevel for a popup object. Both the display and the
screen are optional arguments; if either is set to NULL, then the default display and default screen are
used.

C.3. Attributes of the Shell Object

Summary of Toplevel (Shell) Attributes

Attribute Description

XVW_SHELL_ICONIFY Iconify or deiconify the toplevel object.

2-14

Xvwidgets Program Services Volume III - Chapter 2

Summary of Toplevel (Shell) Attributes

Attribute Description

XVW_SHELL_ICON_MASK Pixmaps are defined by a rectangular grid of values. For implementing

non-rectangular pixmaps, a bitmap is used to indicate which portions of

the rectangular pixmap should appear, and which portions should not

be displayed. This bitmap is referred to as a mask. The bitmap must be

defined in an xbm file, and the bitmap should be of the same size as the

pixmap being displayed. Anywhere a 1 appears in the bitmap, the

value of the pixmap at that point is displayed; anywhere a 0 appears in

the bitmap, the value of the pixmap at that point will not be displayed.

Thus, a circular pixmap can be implemented with a pixmap/bitmap

mask pair: the pixmap will define the picture in the circle, while the

bitmap mask has all 1’s within the boundaries of the circle, and all 0’s

outside the circle bounds. This is the mask used with the icon pixmap,

if any. Candidates for the bitmap may be created with XCre-

ateBitmapFromData(); see The Xlib Reference Manual by O’Reilly

and Associates. Note that this attribute is mutually exclusive with

XVW_SHELL_ICON_MASKFILE; specify one or the other, not both.

XVW_SHELL_ICON_MASKFILE This is the file defining the bitmap mask used with non-rectangular

pixmaps; see XVW_SHELL_ICON_MASK for more details.

XVW_SHELL_ICON_NAME This is the name that appears on the icon associated with the shell when

the application is iconified.

XVW_SHELL_ICON_PIXMAP This is the pixmap that appears on the icon when the application is

iconified. Candidates for the value of this attribute may be created with

the use of XCreatePixmap(); see The Xlib Reference Manual by

O’Reilly and Associates. Note that this attribute is mutually exclusive

with XVW_SHELL_ICON_PIXMAPFILE; specify one or the other, not

both. Note that setting this attribute will over-ride use of the icon name

on the icon, as specified by the value of XVW_SHELL_ICON_NAME .

XVW_SHELL_ICON_PIXMAPFILE The file defining the pixmap that appears on the icon when the applica-

tion is iconified.

XVW_SHELL_ICON_WINDOW The window that is displayed when the application is iconified.

XVW_SHELL_INITIAL_STATE The window’s initial state. This specifies how the shell’s toplevel

should be created, whether in a normal, iconic, or withdrawn state.

XVW_SHELL_INPUT If set to TRUE, the window manager will set the keyboard focus to this

application or not, according to its pointer- following or click-to-type

model of keyboard input. If set to FALSE, the window manager will

not set the keyboard focus to this application. For more details, see The

X Toolkit Intrinsics Programming Manual by Adrian Nye and Tim

O’Reilly, section 10.1.4.

XVW_SHELL_RESIZE Specifies whether or not the shell will request size change from the

window manager.

XVW_SHELL_TITLE This is the title that appears on the window dressing of the toplevel

object.

2-15

Xvwidgets Program Services Volume III - Chapter 2

Summary of Toplevel (Shell) Attributes

Attribute Description

XVW_SHELL_WIN_GRAVITY The window gravity controls the repositioning of subwindows when a

parent window is resized. See Section 4.3.4. of The Xlib Programming

Manual by Adrian Nye for more information.

XVW_SHELL_X For automatic placement of the toplevel object, specify the (x,y) loca-

tion on the screen where the toplevel object is to be automatically

mapped. XVW_SHELL_X specifies the X location for automatic place-

ment.

XVW_SHELL_Y For automatic placement of the toplevel object, specify the (x,y) loca-

tion on the screen where the toplevel object is to be automatically

mapped. XVW_SHELL_Y specifies the Y location for automatic place-

ment.

Descriptions of Toplevel (Shell) Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_SHELL_ICONIFY

(N/A)

int N/A TRUE/FALSE

XVW_SHELL_ICON_MASK

(iconMask)

Pixmap NULL Valid Pixmap structure

XVW_SHELL_ICON_MASKFILE

(N/A)

char * NULL The full path to the xbm file defining the

mask; Note that the path may contain

$TOOLBOX.

XVW_SHELL_ICON_NAME

(iconName)

char * The application

name or the value

of XVW_SHELL_TITLE;

the default is set

by the window man-

ager.

any printable text

XVW_SHELL_ICON_PIXMAP

(iconPixmap)

Pixmap NULL Valid Pixmap structure

XVW_SHELL_ICON_PIXMAPFILE

(N/A)

char * NULL The full path to a valid xpm or xbm file,

defining the desired pixmap. Note that the

path may contain $TOOLBOX.

XVW_SHELL_ICON_WINDOW

(N/A)

Window Defined by window

manager

any valid Window

XVW_SHELL_INITIAL_STATE

(initialState)

int NormalState WithdrawnState, NormalState, IconicState

XVW_SHELL_INPUT

(shellInput)

int TRUE TRUE/FALSE

XVW_SHELL_RESIZE

(shellResize)

int TRUE TRUE/FALSE

2-16

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of Toplevel (Shell) Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_SHELL_TITLE

(shellTitle)

char * None (if shell is

created with xvf_cre-

ate_form(), it will

be set by the

xvforms library to

the title of the

Form given on the

[-F] UIS line for

GUI’s with master

forms, or to the

title of the Sub-

form given on the

[-M] UIS line for

subforms).

any printable text

XVW_SHELL_WIN_GRAVITY

(winGravity)

int NorthWestGravity NorthWestGravity, NorthGravity, North-

EastGravity, WestGravity, CenterGravity,

EastGravity, SouthWestGravity, South-

Gravity, or SouthEastGravity

XVW_SHELL_X

(shellX)

int N/A 0 <= value <= screen width

XVW_SHELL_Y

(shellY)

int N/A 0 <= value <= screen height

D. Setting And Getting Attributes

The characteristics of GUI and visual objects that can be specified by the application are called GUI and visual
object attributes. GUI and visual object resources are pairs of names and values that indicate the current set-
ting of object attributes. Attributes of GUI and visual objects are defined by:

1) The object itself (see "GUI Objects")
2) The constraint resources of its VisiQuest 2001 Manager parent, if applicable (see "The VisiQuest 2001
Manager Widget").
3) The general attributes that are common to all GUI and visual objects (see "General Attributes of GUI &
Visual Objects")

Attributes of GUI and visual objects can be set and retrieved one at a time using xvw_set_attribute() and
xvw_get_attribute(). These routines have three fixed arguments: the object, followed by the (attribute/value)

2-17

Xvwidgets Program Services Volume III - Chapter 2

resource pair. The definitions are as follows.

D.1. xvw_set_attribute() — set a single attribute on an object

Synopsis
xvw_set_attribute(

xvobject object,
char *attribute,
data value)

Input Arguments
object

the object for which to set the attribute
attribute

the attribute name
value

the attribute value

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
sets a single attribute for a visual or GUI object

Restrictions
Restrictions on data or input as applicable

D.2. xvw_get_attribute() — get a single attribute of an object

Synopsis
xvw_get_attribute(

xvobject object,
char *attribute,
data *value)

2-18

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
object

the object for which to get the attribute
attribute

the attribute name

Output Arguments
value

returns the current attribute value

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
gets a single attribute for a visual or GUI object

Restrictions
Restrictions on data or input as applicable

Alternatively, a group of attributes can be set or retrieved at the same time using the xvw_set_attributes() and
xvw_get_attributes() routines. These variable argument routines have a fixed first argument (the object), fol-
lowed by pairs of attributes and values; finally, both routines must have NULL as their last argument to indi-
cate the end of the attribute/value pairs. Neglecting to provide NULL as the last argument to either routine
will most likely result in a segmentation fault. The definitions of these two commonly-used routines are as fol-
lows.

D.3. xvw_set_attributes() — set attributes on an object (variable argument list)

Synopsis
int xvw_set_attributes(

xvobject object,
kvalist)

Input Arguments
object

the object on which to set the attributes
kvalist

variable argument list, must be in the form:

XVW_ATTRIBUTE_1, value1,
XVW_ATTRIBUTE_2, value2,

2-19

Xvwidgets Program Services Volume III - Chapter 2

XVW_ATTRIBUTE_3, value3,
:
:
XVW_ATTRIBUTE_N, valueN,
NULL

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Sets a variable number of attributes associated with a GUI or visual object.

D.4. xvw_get_attributes() — get attributes from an object (variable argument list)

Synopsis
int xvw_get_attributes(

xvobject object,
kvalist)

Input Arguments
object

the object for which to get the attributes
kvalist

variable argument list, must be in the form:

XVW_ATTRIBUTE_1, pointer1,
XVW_ATTRIBUTE_2, pointer2,
XVW_ATTRIBUTE_3, pointer3,
:
:
XVW_ATTRIBUTE_N, pointerN,
NULL

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Gets a variable number of attributes associated with a GUI or visual object.

2-20

Xvwidgets Program Services Volume III - Chapter 2

There are some special rules for the acquiring of strings that you should know. The protocol followed by the
xvwidget library with respect to obtaining string attributes is the same as that followed by the X Toolkit.
Strings are passed by address, and the string returned is simply the address of the string as it appears inter-
nally. That is, the string returned to you is NOT allocated for you, and you may NOT change the value of the
string in any way; it is for inspection purposes only. You do not need to initialize the string, and you should
NEVER free the string. If you intend to change the string and re-set it, you must make a copy of the string,
change the copy, call the appropriate set routine, and free the copy of the string when it is no longer used.
Alternatively, you may copy the string into a buffer and change it without doing an allocation or a free. The
following code segments demonstrate the proper use of a string attribute:

/*
* --
* example 1 changing the attribute using a local allocated string
*/

char *return_string, *string_value;

/* get the value of the string */
xvw_get_attribute(object, XVW_SOME_STRING_ATTRIBUTE, &return_string);

/* copy the string into a local string variable */
string_value = kstring_copy(return_string, NULL);

/* inspect string_value, change string_value as desired */

/* set the attribute to the new value of the string */
xvw_set_attribute(object, XVW_SOME_STRING_ATTRIBUTE, string_value);

/* free the local string variable when it is no longer used */
kfree(string_value);

/*
* --
* example 2 changing the attribute using a local static buffer
*/

char *return_string;
char buffer[KLENGTH];

/* get the value of the string */
xvw_get_attribute(object, XVW_SOME_STRING_ATTRIBUTE, &return_string);

/* append "_name" onto end of string */
sprintf(buffer, "%s_name", return_string);

/* set the attribute to the new value of the string */
xvw_set_attribute(object, XVW_SOME_STRING_ATTRIBUTE, buffer);

E. The VisiQuest 2001 Manager Object

The VisiQuest 2001 manager object is a central element of the VisiQuest 2001 Widget Set. It serves multiple
functions in the creation, layout, and maintenance of the GUI and visual objects that are created in a VisiQuest
2001 application that supports visual display.

2-21

Xvwidgets Program Services Volume III - Chapter 2

To begin, some distinctions must be made in terminology used when referring to the manager object. There
are actually two implementations of the VisiQuest 2001 Manager: the manager widget and the manager gad-
get. When we refer to other visual and GUI objects in GUI and Visualization Services, we make no distinction
between widgets and gadgets; they are all referred to as "objects." For example, an annotation such as a circle
object is a gadget; it has no window created specifically for it, but rather it "borrows" the window of its parent.
A button, on the other hand, is a widget; it has a dedicated window of its own. In spite of their differences,
both the circle and the button are called objects.

The manager object is unique in GUI and Visualization Services, in that it is implemented in both ways. The
manager widget is used to subclass other visual and GUI objects that are also widgets, such as the image
object, the area object, and the zoom object. The manager gadget is used to subclass other visual objects that
are also gadgets, such as axis objects, plot objects, and the various annotation objects. Manager widgets are
created explicitly and used often. In contrast, you cannot create a manager gadget; the only purpose of the
manager gadget is to act as a superclass for the visual objects that are implemented as gadgets.

Throughout the documentation, the Manager widget is often referred to as a manager object, in order to main-
tain consistency with the use of the term "object" when referring to all the other widgets & gadgets provided
by GUI and Visualization Services. On the rare occasions when the manager gadget is meant specifically, it
will be referred to as the "manager gadget."

Since it has its own window, the manager object can serve as a parent, or backplane, for other GUI and visual
objects; this is not true of the manager gadget. A constraint widget, the manager object manages the layout of
its children and allows different layout rules to be provided for each child. After the toplevel object for an
application is created, its child should usually be a Manager object. 1 The manager object, in turn, can be used
as a parent for any number of objects, or other manager objects. The Manager object provides convenience
layout attributes and augmented control attributes. In addition, it has a variety of attributes to support the direct
manipulation of its children.

An important function of the manager object is to support the direct manipulation of child objects. Because
they are created with a manager object as a parent, GUI and visual objects can be moved and resized interac-
tively by the user. An object can be selected with a meta-click - that is, a mouse click on the object using the
first mouse button while the meta key is held down (the key that functions as meta will depend on the particu-
lar key mapping of your keyboard -- most common are shift, control, compose, and alt). Once an object is
selected, it can be resized by holding the first mouse button down on an edge and "dragging" the edge to the
desired size, or it can be moved by holding the mouse button down in the middle of the object and dragging it
to the desired location.

In the same spirit as interactive sizing and positioning, another crucial function of the manager object is to sup-
port the creation and display of internal menuforms associated with child objects. An internal menuform is an
independent GUI that is associated with a particular object, and presents the user with a way of setting the
attributes of that particular object. After selecting the object with a meta-click, the user can bring up the inter-
nal menuform of the object by clicking on the object with the second mouse button, and use the menuform to
set attributes of the object as desired.

The library responsible for the creation of the GUI or visual object also controls the operation of the internal
menuforms that are associated with the objects; however, it is the manager object that associates the internal
menuform with its object and brings up the menuform when it is requested by the user. Internal menuforms

1 Exceptions to this are when a constraint object subclassed from the Manager is used instead,
such as a RowCol object.

2-22

Xvwidgets Program Services Volume III - Chapter 2

are defined and supported for all GUI and visual objects available in the xvwidgets, xvforms, xvisual, and
xvlang libraries. Internal menuforms provide a powerful mechanism for allowing GUI and visual objects to
directly handle user modification of their attributes; the application program is freed from the need to imple-
ment any of the native capabilities of the object.

In summary, the manager object is used as a parent for both GUI and visual objects, and supports a variety of
resources that control the layout of its children. It supports the direct manipulation of GUI and visual objects,
and allows them to bring up internal menuforms that can be used to set their attributes.

E.1. xvw_create_manager() — create a VisiQuest Manager object

Synopsis
xvobject xvw_create_manager(

xvobject parent,
char *name)

Input Arguments
parent

parent of the Manager object: a toplevel object, another Manager object, or NULL. If NULL is pro-
vided, a default toplevel object will be created automatically to serve as a parent for the manager.

name
a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The Manager object on success, NULL on failure

Description
Creates a VisiQuest Manager object to serve as a backplane (parent) for visual objects and/or GUI objects
. The following widget is the base widget used by all graphical user interface programs. This manager
plays an integral role in managing all VisiQuest related applications. It is the glue by which several
important VisiQuest features are implemented.

The features that this widget provide are:

1) common manager widget to make implementing multiple widgets set possible.

2) the ability of providing an interactive editing capibility to every application.

3) with the advent of an object (gadget) based annotations capibility. We want any application to be
able to advantage of this feature with little or no work. (this also enforces a common interface).

First off by having a common widget "manager" we effectively make the implementation of multiple
widget sets possible. The idea is that most widgets sets such as

Athena, Motif, Open Look (Olit)

2-23

Xvwidgets Program Services Volume III - Chapter 2

have similar objects such as buttons, labels, lists, etc. But the manager widgets are not similar. They
all have a different layout philsophy and terminolgy thus making it difficult to write transparent code
for. Also, since we originally wrote Khoros 1.0 with the MIT Form Widget in mind, this part of the
system is extremely similar in terminology.

E.2. Attributes of the VisiQuest 2001 Manager Object

The VisiQuest 2001 Manager widget is a constraint widget; that is, it manages the layout of its children and
allows the application to provide layout information for each child. Thus, you may provide different rules for
how each child will be laid out, if applicable. This section details a number of constraint resources that are
provided by the VisiQuest 2001 Manager widget. Remember that these resources may be set on any GUI or
visual object, provided that the object in question has a Manager object for a parent.

E.2.1. Relative Layout Attributes

The following attributes are used to specify the relative location of a object. When another (previously cre-
ated) object is specified, the object is relative to the location of the other object. Explicitly setting one of these
attributes to NULL will result in a location relative to the edges of the parent. Note that default values are not
NULL but undefined.

Summary of Relative Layout Attributes

Attribute Description

XVW_ABOVE The object having the attribute set will appear above the object speci-

fied. Setting the attribute to NULL implies that the object will be above

nothing; ie, it will appear at the bottom of the parent.

XVW_BELOW The object having the attribute set will appear below the object speci-

fied. Setting the attribute to NULL implies that the object will be

below nothing; ie, it will appear at the top of the parent.

XVW_LEFT_OF The object having the attribute set will appear to the left of the object

specified. Setting the attribute to NULL implies that the object will be

left of nothing; ie, it will appear at the right edge of the parent.

XVW_RIGHT_OF The object having the attribute set will appear to the right of the object

specified. Setting the attribute to NULL implies that the object will be

right of nothing; ie, it will appear at the left edge of the parent.

Descriptions of Relative Layout Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_ABOVE

(N/A)

xvobject MANAGER_UNDEFINED NULL, or sibling visual object

XVW_BELOW

(N/A)

xvobject MANAGER_UNDEFINED NULL, or sibling visual object

2-24

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of Relative Layout Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_LEFT_OF

(N/A)

xvobject MANAGER_UNDEFINED NULL, or sibling visual object

XVW_RIGHT_OF

(N/A)

xvobject MANAGER_UNDEFINED NULL, or sibling visual object

The relative layout attributes can be used in combination to achieve various effects. For example, suppose a
object is specified to be XVW_ABOVE NULL and XVW_BELOW NULL. This causes it to "pull" with equal weight to
the bottom and top edges of the parent, resulting in a location in the vertical middle of the parent. The follow-
ing table shows some effects that can be achieved by setting various combinations to NULL. Use of a "-" in
the table indicates that the attribute is not specified (left undefined).

Configurations Specified using Relative Layout WRT Parent Using NULL

Desired Location XVW_ABOVE XVW_BELOW XVW_RIGHT_OF XVW
_LEFT_OF

- NULL NULL -Object in upper left
hand corner.

- NULL - NULLObject in upper
right hand corner.

NULL - - NULLObject in lower
right hand corner.

NULL - NULL -Object in lower left
hand corner.

NULL NULL NULL -Object on left edge
of parent, in vertical
middle

NULL NULL - NULLObject on right
edge of parent, in
vertical middle

NULL - NULL NULLObject on top edge
of parent, in hori-
zontal middle

- NULL NULL NULLObject on bottom
edge of parent, in
horizontal middle

NULL NULL NULL NULLObject in exact cen-
ter of parent.

2-25

Xvwidgets Program Services Volume III - Chapter 2

E.2.2. Pixel Geometry Bounds Attributes

The following attributes are used to specify bounds on object geometry in pixels. Both take integer values,
and will take precedence over any counterparts specified in character widths (see "Character Geometry
Bounds").

Summary of Attributes That Control Maximum/Minimum Sizing

Attribute Description

XVW_MAXIMUM_HEIGHT Maximum width of the object in pixels.

XVW_MAXIMUM_WIDTH Maximum width of the object in pixels.

XVW_MINIMUM_HEIGHT Minimum height of the object in pixels.

XVW_MINIMUM_WIDTH Minimum height of the object in pixels.

Descriptions of Attributes That Control Maximum/Minimum Sizing

Attribute Type Default Legal
(Resource Name) Values

XVW_MAXIMUM_HEIGHT

(maximumHeight)

int KMANAGER_UNDEFINED value > 0

XVW_MAXIMUM_WIDTH

(maximumWidth)

int KMANAGER_UNDEFINED value > 0

XVW_MINIMUM_HEIGHT

(minimumHeight)

int 1 value > 0

XVW_MINIMUM_WIDTH

(minimumWidth)

int 1 value > 0

E.2.3. Preferred Sizing Attributes

Preferred sizing is used to tell the manager the initial size from which to do its own geometry layout, before
doing geometry layout of its children. For example, suppose the preferred width and height are both set to
512. The manager object will begin by sizing itself at (512x512). However, if it requires a larger size than
(512x512) in order to accomodate its children, it will grow as necessary. Thus, preferred sizing can be thought
of as a geometry "hint;" it specifies a reasonable starting size for the manager, but the actual size of the man-
ager when it is mapped may be larger if necessary.

Summary of Preferred Geometry Attributes

Attribute Description

XVW_PREFERRED_HEIGHT The preferred height of the manager object.

XVW_PREFERRED_WIDTH The preferred width of the manager object.

2-26

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of Preferred Geometry Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PREFERRED_HEIGHT

(preferredHeight)

int undefined value > 0

XVW_PREFERRED_WIDTH

(preferredWidth)

int undefined value > 0

E.2.4. Pixel Spacing Attributes

Pixel spacing can be used in conjunction with relative layout in order to achieve the desired effect on a dis-
play. All attributes are set with integer values.

Summary of Attributes That Control Spacing

Attribute Description

XVW_BUFFER_DIST This is the buffer distance in pixels around the edge of the Manager. It

represents the minimum number of pixels that will appear between a

child and the nearest edge of its parent.

XVW_DEF_HORIZ_DIST This attribute is used only with constraint objects that will be laying out

children, such as manager objects, rowcol objects, viewport objects,

and so on. It sets the default horizontal distance, in pixels, that children

will be spaced from one another when doing relative layout. Suppose

you have a manager object containing many buttons, each of which is

right of the last. If you wanted each button to appear 5 pixels to the

right of the one before it, you could set XVW_HORIZ_DIST to 5 on each

of the children. An easier approach, however, would be to simply set

XVW_DEF_HORIZ_DIST to 5 once, on the manager object parent. Note

that the value specified by XVW_DEF_HORIZ_DIST will be over-ridden

by individual horizontal distances specified by any of the children using

XVW_HORIZ_DIST .

XVW_DEF_VERT_DIST This attribute is used only with constraint objects that will be laying out

children, such as manager objects, rowcol objects, viewport objects,

and so on. It sets the default vertical distance, in pixels, that children

will be spaced from one another when doing relative layout. Suppose

you have a manager object containing many buttons, each of which is

below the last. If you wanted each button to appear 7 pixels below the

one above it, you could set XVW_VERT_DIST to 7 on each of the chil-

dren. An easier approach, however, would be to simply set

XVW_DEF_VERT_DIST to 7 once, on the manager object parent. Note

that the value specified by XVW_DEF_VERT_DIST will be over-ridden

by individual vertical distances specified by any of the children using

XVW_VERT_DIST .

2-27

Xvwidgets Program Services Volume III - Chapter 2

Summary of Attributes That Control Spacing

Attribute Description

XVW_HORIZ_DIST Horizontal distance in pixels (to the right) from the location at which

the object would otherwise be placed. This is most often used in con-

junction with relative layout. For example, you might use the

XVW_RIGHT_OF attribute to make an object appear to the right of a sec-

ond object; XVW_HORIZ_DIST can then be used to specify how many

pixels to the right the first object should be spaced from the second.

XVW_VERT_DIST Vertical distance in pixels (down) from the location at which the object

would otherwise be placed. This is most often used in conjunction with

relative layout. For example, you might use the XVW_BELOW attribute to

make an object appear below a second object; XVW_VERT_DIST can

then be used to specify how many pixels below the second object the

first object should appear.

Descriptions of Attributes That Control Spacing

Attribute Type Default Legal
(Resource Name) Values

XVW_BUFFER_DIST

(bufferDist)

int 3 values >= 0

XVW_DEF_HORIZ_DIST

(defHorizDist)

int 3 values >= 0

XVW_DEF_VERT_DIST

(defVertDist)

int 3 values >= 0

XVW_HORIZ_DIST

(horizDist)

int 0 values >= 0

XVW_VERT_DIST

(vertDist)

int 0 values >= 0

E.2.5. Tacking Attributes

Tacking is a technique that is used to easily control size and positioning of GUI and visual objects. Tacking
causes an edge of the child object to be "attached" to the nearest edge of its parent or closest neighbor, so that
regardless of how the object or its parent are moved or resized, the tacked edge is always a fixed distance from
the edge to which it is tacked. The child will stretch or shrink as necessary to preserve the small fixed distance
between its tacked edge and the edge of its parent (or neighbor).

The fixed distance that is maintained between the tacked edge and the edge of its parent (or neighbor) is deter-
mined by the values of the pixel spacing attributes (XVW_HORIZ_DIST , XVW_VERT_DIST ,
XVW_DEF_HORIZ_DIST , and XVW_DEF_VERT_DIST)

An edge can be tacked to the right, to the left, to the top, or to the bottom. In order to achieve all possible
combinations, values for tacking can be OR’d together to indicate horizontal tacking, vertical tacking, tacking
on all edges, or any other desired combination.

2-28

Xvwidgets Program Services Volume III - Chapter 2

Summary of Tacking Attributes

Attribute Description

XVW_TACK_EDGE Tacks the edge(s) of the object to the edge(s) of its nearest neighbor or

parent. This attribute takes a mask. These masks may be OR’ed

together in order to achieve the desired tacking setup. Values accepted

include:

KMANAGER_TACK_LEFT: !Set to NULL: Tack the left edge of the

object ! to the left edge of its parent !Set to non-NULL: Tack

the left edge of the object ! to the right edge of its nearest

neighbor ! on the left.

KMANAGER_TACK_RIGHT: !Set to NULL: Tack the right edge of the

object ! to the right edge of its parent !Set to non-NULL:

Tack the right edge of the object ! to the left edge of its near-

est neighbor ! on the right.

KMANAGER_TACK_TOP: !Set to NULL: Tack the top edge of the

object ! to the top edge of its parent !Set to non-NULL: Tack

the top edge of the object ! to the bottom edge of the nearest

neighbor ! above it.

KMANAGER_TACK_BOTTOM: !Set to NULL: Tack the bottom edge of

the object ! to the bottom edge of its parent !Set to non-

NULL: Tack the bottom edge of the object ! to the top edge

of the nearest neighbor ! below it.

KMANAGER_TACK_VERT: Tack the left and right edges of the object at

the same time; note that this is the same as OR’ing together KMAN-

AGER_TACK_LEFT and MANAGER_TACK_RIGHT , and passing the result.

KMANAGER_TACK_HORIZ: Tack the top and bottom edges of the object

at the same time; note that this is the same as OR’ing together KMAN-

AGER_TACK_TOP KMANAGER_TACK_BOTTOM , and passing the result.

KMANAGER_TACK_ALL: Tack all four edges of the object at the same

time; note that this is the same as OR’ing together KMAN-

AGER_TACK_LEFT , KMANAGER_TACK_RIGHT , KMANAGER_TACK_TOP ,

and KMANAGER_TACK_BOTTOM , and passing the result.

KMANAGER_TACK_NONE: Disable tacking

2-29

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of Tacking Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_TACK_EDGE

(N/A)

int KMANAGER_TACK_NONE KMANAGER_TACK_NONE

KMANAGER_TACK_LEFT

KMANAGER_TACK_RIGHT

KMANAGER_TACK_TOP

KMANAGER_TACK_BOTTOM

KMANAGER_TACK_VERT

KMANAGER_TACK_HORIZ

KMANAGER_TACK_ALL

E.2.6. Attributes That Control Direct Manipulation of Children

These resources are used to control the type and amount of direct manipulation that is enabled on a particular
GUI or visual object, if any.

Summary of Attributes that Enable Direct Manipulation of Children

Attribute Description

XVW_CANVAS_GRID This attribute indicates when a grid should be displayed on the canvas.

KMANAGER_GRID_OFF specifies that the grid is always off. KMAN-

AGER_GRID_ON specifies that the grid is always on. KMAN-

AGER_GRID_EDIT specifies that the grid is only on when the canvas is

in "edit mode". The canvas can be put in edit mode by the user, or

through the application by setting the manager object attribute

XVW_EDIT_MODE_ON to TRUE. KMANAGER_GRID_SELECT specifies

that the grid is only displayed when a child of the canvas has been

selected by the user, or through the application by setting the manager

object attribute XVW_SELECT_ADD to TRUE.

XVW_CANVAS_GRIDSIZE The dimensions of the grid, given in pixels.

XVW_CHILDREN This read only attribute allows you to obtain an array of the Widgets

representing the children of the specified object. The fact that this

attribute returns Widgets rather than xvwidgets represents an inconsis-

tency; however, due to internal limitations, the children must be

returned as Widgets at this time. Note that a Widget may always be

converted to an xvobject with the use of xvw_object().

XVW_EDIT_MODE_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

manager object which will be fired when the user puts it into or takes it

out of edit mode. When calling xvw_add_callback(), pass this attribute

directly, as in

xvw_add_callback(manager_object, XVW_EDIT_MODE_CALLBACK,

callback_function, client_data);

Note that in order to allow the user to select the manager object, its

XVW_SELECTABLE attribute must be TRUE (the default).

2-30

Xvwidgets Program Services Volume III - Chapter 2

Summary of Attributes that Enable Direct Manipulation of Children

Attribute Description

XVW_EDIT_MODE_ON This attribute allows the application to control whether or not a visual

object is in edit mode. When the visual object is in "edit mode", it will

usually display a grid where each square is 1/2 character width by 1/2

character height. Once an object is in edit mode, it will allow the user

to select, resize, and move its children (provided that the children have

XVW_SELECTABLE and XVW_RESIZABLE set to TRUE, respectively.

Note that the user can put a visual object in edit mode by doing a

"meta-click", ie, by holding down the "meta" key (the key which acts as

"meta" on a keyboard will depend on the keyboard mapping -- most

common are "Alt", "Compose", "Ctrl", and "Shift"), and simultane-

ously clicking the left mouse button on the visual object.

XVW_GEOMETRY_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

visual object which will be fired when the user resizes or moves the

object. When calling xvw_add_callback(), pass this attribute directly,

as in

xvw_add_callback(visualobj, XVW_GEOMETRY_CALLBACK,

callback_function, client_data);

Note that in order to allow the user to resize the object, the

XVW_RESIZABLE attribute must be set to TRUE; to be selected and

moved, the XVW_SELECTABLE attribute must be set to TRUE. Inside

the callback, the new width, height, x and y position of the visual object

may be obtained using pixel geometry attributes or character geometry

attributes.

XVW_GROUP_ADD This action attribute causes the specified object to be added into the

child’s group list. The object will then be selected when the child is

selected.

XVW_GROUP_DELETE This action attribute causes the specified object to be deleted from the

child’s group list. The object will then no longer be selected when the

child is selected.

XVW_GROUP_DELETE_ALL This action attribute causes the child’s entire group list to be deleted.

All the previously grouped siblings are deleted from the group list of

the object of which the attribute is set.

XVW_MENUABLE If TRUE, will allow the user to bring up an internal menuform for the

object. Note that the *.pane file describing the internal menuform for

the object must be specified using XVW_MENU_FORM .

XVW_NUM_CHILDREN This read only attribute is used in conjunction with XVW_CHILDREN; it

returns the number of children of the object specified.

XVW_NUM_SELECTIONS This read only attribute is used in conjunction with XVW_SELECTIONS;

it returns the number of selected children in the object specified.

2-31

Xvwidgets Program Services Volume III - Chapter 2

Summary of Attributes that Enable Direct Manipulation of Children

Attribute Description

XVW_REFRESH_CHILDREN_ON_EDIT When set to TRUE, the manager object will constantly refresh its chil-

dren, even when they are interactively being moved or resized (edited)

by the user. When set to FALSE, the the user has finished editing

(moving or resizing) the child.

XVW_RESIZABLE If TRUE, this attribute will allow the user to interactively resize the

object after selecting it, when the parent is in edit mode .

XVW_SELECTABLE If TRUE, will allow the user to select the object when the parent is in

edit mode. When an item is selected, it will be "bracketed". A select

list is kept; this is a list of all the children that are selected at any giv en

time. The application may inquire which children are selected at any

given time by using the XVW_XVW_SELECTIONS attribute. Note that the

manager object will allow selected objects to be moved by the user.

XVW_SELECTIONS This read only attribute only applies to constraint objects, such as man-

ager objects, canvas objects, rowcol objects, and so on, that support lay-

out and direct manipulation of children. If the XVW_SELECTABLE

attribute is TRUE, the user will be allowed to interactively select child

objects of the specified object. Selected objects will be "bracketed" on

all four corners to indicate that they are currently selected. The

XVW_SELECTIONS attribute may be used to obtain an array of the cur-

rently selected child objects of the object specified.

XVW_SELECT_ADD This action attribute causes the specified object to be selected, and adds

it to the select list of the parent.

XVW_SELECT_ADD_ALL This action attribute takes all children of the object on which the

attribute is set, and selects them. All the children are added to the

select list of the object on which the attribute is set.

XVW_SELECT_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

manager object which will be fired when the user selects any of its chil-

dren. When calling xvw_add_callback(), pass this attribute directly, as

in

xvw_add_callback(manager_object, XVW_SELECT_CALLBACK,

callback_function, client_data);

Note that in order to allow the user to select children of the manager

object, the XVW_SELECTABLE attribute must be set to TRUE on the

manager object.

XVW_SELECT_DELETE This action attribute causes the specified object to be un-selected, and

deletes it from the select list of the parent.

XVW_SELECT_DELETE_ALL This action attribute takes all selected children of the object on which

the attribute is set, and un-selects them. All the previously selected

children are deleted from the select list of the object of which the

attribute is set.

2-32

Xvwidgets Program Services Volume III - Chapter 2

Summary of Attributes that Enable Direct Manipulation of Children

Attribute Description

XVW_SELECT_REPLACE This action attribute allows the application to un-select any currently

selected children of the parent of the specified object, and instead force

the specified object to be the one that is selected. This causes the previ-

ous select list to be replaced with a list of size 1, containing only the

object specified.

XVW_SNAP_ON This attribute only applies to constraint objects, such as manager

objects, canvas objects, rowcol objects, and so on, that support layout

and direct manipulation of children. With interactive movement of

selected child objects, the child objects can be made to "snap" to the

new position, aiding the user in more precise interactive layout of

objects. This attribute specifies whether the XVW_XSNAP and

XVW_YSNAP should be used when directly manipulating children.

XVW_UNSELECT_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

manager object which will be fired when the user unselects any of its

children. When calling xvw_add_callback(), pass this attribute directly,

as in

xvw_add_callback(manager_object, XVW_UNSELECT_CALLBACK,

callback_function, client_data);

Note that in order to allow the user to unselect children of the manager

object, the XVW_SELECTABLE attribute must be set to TRUE on the

manager object.

XVW_XSNAP This attribute only applies to constraint objects, such as manager

objects, canvas objects, rowcol objects, and so on, that support layout

and direct manipulation of children. With interactive movement of

selected child objects, the child objects can be made to "snap" to the

new position, aiding the user in more precise interactive layout of

objects. This attribute specifies, in pixels, the horizontal increments of

the implied grid (visible or not) to which children will "snap". For

example, if XVW_XSNAP is set to 15, then objects will "snap" to posi-

tions in 15-pixel increments.

XVW_YSNAP This attribute only applies to constraint objects, such as manager

objects, canvas objects, rowcol objects, and so on, that support layout

and direct manipulation of children. With interactive movement of

selected child objects, the child objects can be made to "snap" to the

new position, aiding the user in more precise interactive layout of

objects. This attribute specifies, in pixels, the vertical increments of the

implied grid (visible or not) to which children will "snap". For exam-

ple, if XVW_YSNAP is set to 20, then objects will "snap" to positions in

20-pixel increments.

2-33

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of Attributes That Enable Direct Manipulation of Children

Attribute Type Default Legal
(Resource Name) Values

XVW_CANVAS_GRID

(canvasGrid)

int KMANAGER_GRID_SELECT KMANAGER_GRID_OFF

KMANAGER_GRID_ON

KMANAGER_GRID_EDIT

KMANAGER_GRID_SELECT

XVW_CANVAS_GRIDSIZE

(canvasGridsize)

int 15 value > 0

XVW_CHILDREN

(N/A)

Widget * N/A Widget array of the children of the speci-

fied object.

XVW_EDIT_MODE_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_EDIT_MODE_ON

(editModeOn)

int FALSE TRUE/FALSE

XVW_GEOMETRY_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr);

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_GROUP_ADD

(N/A)

xvobject N/A Visual objects that have XVW_SELECTABLE

set to true

XVW_GROUP_DELETE

(N/A)

xvobject N/A Visual objects that have XVW_SELECTABLE

set to true, and a parent currently in edit

mode.

XVW_GROUP_DELETE_ALL

(N/A)

int FALSE TRUE/FALSE

XVW_MENUABLE

(menuable)

int FALSE TRUE/FALSE

XVW_NUM_CHILDREN

(N/A)

int N/A number of children (values >= 0) of the

specified object.

XVW_NUM_SELECTIONS

(N/A)

int N/A number of selected children (values >= 0)

XVW_REFRESH_CHILDREN_ON_EDIT

(refreshChildrenOnEdit)

int TRUE TRUE/FALSE

XVW_RESIZABLE

(resizable)

int FALSE TRUE/FALSE

XVW_SELECTABLE

(selectable)

int TRUE TRUE/FALSE

2-34

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of Attributes That Enable Direct Manipulation of Children

Attribute Type Default Legal
(Resource Name) Values

XVW_SELECTIONS

(N/A)

xvobject * NULL array of xvwidgets that are currently

selected

XVW_SELECT_ADD

(N/A)

xvobject N/A Visual objects that have XVW_SELECTABLE

set to true, and a parent currently in edit

mode.

XVW_SELECT_ADD_ALL

(N/A)

int FALSE TRUE/FALSE

XVW_SELECT_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_SELECT_DELETE

(N/A)

xvobject N/A Visual objects that have XVW_SELECTABLE

set to true, and a parent currently in edit

mode.

XVW_SELECT_DELETE_ALL

(N/A)

int FALSE TRUE/FALSE

XVW_SELECT_REPLACE

(N/A)

xvobject N/A Visual objects that have XVW_SELECTABLE

set to true, and a parent currently in edit

mode.

XVW_SNAP_ON

(Xsnap)

int 10 values > 0

XVW_UNSELECT_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_XSNAP

(Xsnap)

int 10 values > 0

XVW_YSNAP

(Ysnap)

int 10 values > 0

E.3. Attributes of the VisiQuest 2001 Manager Gadget

As explained at the beginning of the section, the VisiQuest 2001 Manager gadget is not created by the applica-
tion program. It’s only purpose is to act as a superclass for visual objects that are implemented as gadgets,
such as the circle object, the line object, the labelstring object, the plot object, the axis object, and so on.
Because of its role as a superclass, it offers attributes that subclassed objects can set. These attributes are listed
here.

2-35

Xvwidgets Program Services Volume III - Chapter 2

Summary of Attributes Inherited From the Manager Gadget

Attribute Description

XVW_FORCE_REDISPLAY

Descriptions of Attributes Inherited From the Manager Gadget

Attribute Type Default Legal
(Resource Name) Values

XVW_FORCE_REDISPLAY

(forceRedisplay)

int FALSE TRUE/FALSE

F. Callbacks, Event/Action/Input Handlers, & Timeouts

VisiQuest 2001, like the X Window system on which it is based, is event driven. Events occur, and applica-
tions are expected to respond appropriately. Some events are derived from user input; these events include
key press events, mouse click events, and pointer motion events. Other ev ents are derived from interaction
between two different applications; the classic example of this is exposure events, which occur when a win-
dow of one program is moved and exposes a window from a second program. Still other events may be initi-
ated via the window manager, such as mapping and unmapping events.

There is no way to predict which events will occur, or when they will occur -- that depends on the user. There-
fore, it is natural for an application developer to tell the underlying system, "when something happens, call this
routine." To be more realistic, the application is more likely to need to say, "when this particular thing hap-
pens, call this routine." Since subroutines are usually in need of parameters, it is easy to see where the request
would be extended to, "when this particular thing happens, call this routine with this data"

The method that VisiQuest 2001 applications use to make such requests of the underlying VisiQuest 2001
libraries is with the installation of callbacks, event handlers, action handlers, input handlers, and timeouts.
These are simply specialized subroutines with predefined parameter lists that are automatically called when the
specified event happens on the specified object. The type of object in which the event occurs, as well as the
type of event itself, determines whether the routine is classified as callback, an event handler, an action han-
dler, or an input handler.

Callbacks are used with GUI objects. The event which causes the callback to be "fired," or called, is defined
by the GUI object itself. Event handlers may be used with GUI objects, but more frequently they are used with
visual objects. The event which causes an event handler to be called is defined by the calling application; if
desired, an event handler may be called when any one of several events occurs. The events that evoke event
handlers are fairly general; they are events such as "the pointer was moved" or "a key was pressed." On the
other hand, action handlers support very specific combinations of events, such as "the return key was pressed,"
or "the shift key was held down while the first mouse button was pressed." In contrast, input handlers are
invoked when data changes rather than when an event occurs on the X display. An input handler can called

2-36

Xvwidgets Program Services Volume III - Chapter 2

when a particular file is changed, or when input (or output) is detected on the a descriptor.

F.1. Using Callbacks

GUI objects present the user with information, and passively prompt the user to perform a particular action.
The type of action is defined by the nature of the GUI object; a button object, for example, waits for a button
press. If and when the user performs the specified action, the GUI object can then pass software control to a
subroutine defined by the application. The subroutine to which software control is passed when the specified
action is performed on the GUI object by the user is called the callback.

To install a callback on a particular GUI object, the xvw_add_callback() routine is used:

F.1.1. xvw_add_callback() — add a callback to a GUI object

Synopsis
void xvw_add_callback(

xvobject object,
char *type,
void (*callback_routine)(xvobject, kaddr, kaddr),
kaddr client_data)

Input Arguments
object

object on which to add callback.
type

ev ent type on which to add callback, one of:

XVW_BUTTON_SELECT
XVW_DESTROY
XVW_LIST_HIGHLT_ELEM
XVW_LIST_ITEM_ACTION
XVW_LIST_ITEM_SELECT
XVW_LIST_UNHIGHLT_ELEM
XVW_SCROLL_CONT_MOTION
XVW_SCROLL_INCR_MOTION

XVW_DOUBLE_CALLBACK
XVW_EDITMODE_CALLBACK
XVW_ERROR_CALLBACK
XVW_FLOAT_CALLBACK
XVW_GEOMETRY_CALLBACK
XVW_HELP_CALLBACK
XVW_INFO_CALLBACK
XVW_INPUTFILE_CALLBACK

2-37

Xvwidgets Program Services Volume III - Chapter 2

XVW_INTEGER_CALLBACK
XVW_LAYOUT_CALLBACK
XVW_OUTPUTFILE_CALLBACK
XVW_SELECT_CALLBACK
XVW_TEXTDISPLAY_CALLBACK
XVW_TEXTINPUT_CALLBACK
XVW_WARN_CALLBACK

callback_routine
callback routine to install

client_data
pointer to private application data that will be passed to callback routine

Description
Installs a callback on a GUI object. When the GUI object is used as specified by the type argument,
the callback will be called.

A callback must be defined as follows:

void callback(
xvobject object,
kaddr client_data,
kaddr call_data)

object -
The GUI object for which the callback was invoked.

client_data -
The pointer to the private client data, used to pass
parameters from the application to the callback routine.

call_data -
The call_data is the mechanism through which the
GUI object itself can pass parameters to a callback when * ! applicable. The structure type of the ca
defined by the GUI object; it must be cast to its correct
structure type before being used in the callback.
Please see the documentation on the particular GUI object
of interest for the definition and use of the call_data
pointer by a particular GUI object.

To delete a callback currently installed on a GUI object, the xvw_remove_callback() routine is used:

F.1.2. xvw_remove_callback() — remove a callback from a GUI object

Synopsis
void xvw_remove_callback(

2-38

Xvwidgets Program Services Volume III - Chapter 2

xvobject object,
char *type,
void (*callback_routine)(xvobject, kaddr, kaddr),
kaddr client_data)

Input Arguments
object

GUI object from which to remove callback.
type

ev ent type from which to remove callback, one of:

XVW_BUTTON_SELECT
XVW_DESTROY
XVW_LIST_HIGHLT_ELEM
XVW_LIST_ITEM_ACTION
XVW_LIST_ITEM_SELECT
XVW_LIST_UNHIGHLT_ELEM
XVW_SCROLL_CONT_MOTION
XVW_SCROLL_INCR_MOTION

XVW_DOUBLE_CALLBACK
XVW_EDITMODE_CALLBACK
XVW_ERROR_CALLBACK
XVW_FLOAT_CALLBACK
XVW_GEOMETRY_CALLBACK
XVW_HELP_CALLBACK
XVW_INFO_CALLBACK
XVW_INPUTFILE_CALLBACK
XVW_INTEGER_CALLBACK
XVW_LAYOUT_CALLBACK
XVW_OUTPUTFILE_CALLBACK
XVW_SELECT_CALLBACK
XVW_TEXTDISPLAY_CALLBACK
XVW_TEXTINPUT_CALLBACK
XVW_WARN_CALLBACK

client_data
pointer to private application data that was being passed to callback routine

Description
Removes a callback from a GUI object.

2-39

Xvwidgets Program Services Volume III - Chapter 2

F.1.3. Callback Example

#include "design.h"

/*
* This example illustrates how a callback is installed on a button object.
* It also reminds us of the fact that we need not use the client_data
* pointer to pass any information that can be obtained through a
* xvw_get_attributes() calls on the xvobject itself.
*
*/

void button_callback PROTO((xvobject, kaddr, kaddr));

void main(
int argc,
char *argv[])

{
xvobject manager;
xvobject button;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets library */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror("example", "main", "Cannot open display");
kexit(KEXIT_FAILURE);

}

/* create a manager backplane */
manager = xvw_create_manager(NULL, "back");

/* a single button on the manager */
button = xvw_create_button(manager, "button");
xvw_set_attributes(button,

XVW_LABEL, "Yellow", /* label says yellow */
XVW_BACKGROUND_COLOR, "yellow", /* yellow color */
NULL);

/* add callback to button */
xvw_add_callback(button, XVW_BUTTON_SELECT,

button_callback, NULL);

/* display and run */
xvf_run_form();

}

/*
* here’s the callback for the button
*/

void button_callback(
xvobject object, /* the button */
kaddr client_data, /* not used */
kaddr call_data) /* not used */

{

2-40

Xvwidgets Program Services Volume III - Chapter 2

float char_width;
float char_height;
char *label;
char *bg_color;

/*
* obtain info from the button object
*/
xvw_get_attributes(object,

XVW_CHAR_WIDTH, &char_width,
XVW_CHAR_HEIGHT, &char_height,
XVW_BACKGROUND_COLOR, &bg_color,
XVW_LABEL, &label,
NULL);

/*
* use kinfo() to pop up information about the button
*/
kinfo(KSTANDARD, "Button %s,\ncolor %s,\nwidth x height = %.1f x %.1f",

label, bg_color, char_width, char_height);
}

F.2. Using Event Handlers

Visual objects present the user with information. Unlike GUI objects, they do not necessarily imply a particu-
lar action on the part of the user. For example, the button GUI object passively prompts the user to click the
button on it. By contrast, the image visual object just sits there, refreshing itself when necessary. Depending
on context, it may or may not make sense for the user to click on the image.

When visual objects are used, it is up to the application to decide whether a particular event, such as a button
press or a pointer motion, will invoke any particular subroutine. The application specifies not only which
visual object will invoke which subroutine (as in a callback) but also for which event(s) the subroutine will be
invoked (in the case of event handlers only). The fact that the application specifies which event which will
invoke the subroutine makes the subroutine an event handler, as opposed to a callback in which the object
itself would define the event.

To install an event handler for a particular event on a visual object, the xvw_add_event() or xvw_insert_event()
routine is used.

F.2.1. xvw_add_event() — add an event handler to an object

Synopsis
void xvw_add_event(

xvobject object,
unsigned long event_mask,
void (*routine)(xvobject, kaddr, XEvent *, int *),
kaddr client_data)

2-41

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
object

object on which to install event handler (note that you may not pass NULL)
event_mask

ev ent mask representing the event for which the event handler is to be fired
routine

the event handler to be called when event occurs
client_data

private data to be used by the event handler

Description
Add an event handler to a visual object. When the specified event(s) occur, the event handler will be
called.

Since the X Toolkit cannot support event handling of gadgets, we support them by placing the event
handler on the parent and then directing the dispatch of the event handler directly.

The event handler must be associated with an object; only when the specified event(s) occur on the
specified object will the event handler be called (ie, the same event in another object will be ignored).

An event handler must be declared in the following form:

void event_handler(
xvobject object,
kaddr client_data,
XEvent *event,
int *dispatch)

object -
The object for which the event handler was invoked.
It will not be NULL.

client_data -
The pointer to the client data, used to pass parameters
from the application to the event handler.

event -
This is a pointer to the XEvent union which caused the
ev ent handler to be invoked. For details on the XEvent
union, see Chapter 8 of the Xlib Programming Manual,
by Adrian Nye; the definition of the XEvent union is on
page 232.

dispatch -
By default, the event that caused this event handler to be
invoked will continue to propagate to any other event
handlers that might also be installed for the same event
on the same visual object. The dispatch integer
pointer can be used to prevent the event from being

2-42

Xvwidgets Program Services Volume III - Chapter 2

dispatched, and to prevent any other such event handlers
from being called. To prevent dispatch of the event to
any other event handlers, set this variable to FALSE,
as in: *dispatch = FALSE;

F.2.2. xvw_insert_event() — insert an event handler into an object’s event list.

Synopsis
void xvw_insert_event(

xvobject object,
unsigned long event_mask,
void (*routine)(xvobject, kaddr, XEvent *, int *),
kaddr client_data,
int position)

Input Arguments
object

object on which to install event handler
event_mask

ev ent mask representing the event for which the event handler is to be fired
routine

the event handler to be called when event occurs
client_data

private data to be used by the event handler
position

the position to which this event handler is to be added to the event list. Event handlers for a particular
object are maintained in an event list for the object. When multiple event handlers are installed on the
same object, they are fired in the order in which they appear in the list. The position may be set to
KLIST_HEAD to insert the event at the head of the list, or KLIST_TAIL to insert the event handler at
the end of the list. Note: xvw_add_event() adds the event handler at the end of the list.

Description
Adds an event handler to an object, but also allows specification of the position in the event list where
the event handler is to be added. See xvw_add_event() for general details.

In fact, xvw_add_event() is a macro that simply calls xvw_insert_event() with position set to KLIST_TAIL.

Note that both the xvw_add_event() and xvw_insert_event() routines take an event mask. The event mask indi-
cates which event(s) will invoke the event handler. For more information on the event mask, please see Chap-
ter 8 of the Xlib Programming Manual, by Adrian Nye. Some of the more common event masks include:
KeyPressMask, KeyReleaseMask, ButtonPressMask, ButtonReleaseMask,

2-43

Xvwidgets Program Services Volume III - Chapter 2

PointerMotionMask, PointerMotionHintMask, ButtonMotionMask, Button1Motion-
Mask, Button2MotionMask, Button3MotionMask EnterWindowMask, LeaveWindow-
Mask, FocusChangeMask, ExposureMask, VisibilityChangeMask, and StructureNo-
tifyMask.

To delete an event handler that is currently installed on a visual object, the xvw_remove_event() routine is used:

F.2.3. xvw_remove_event() — remove an event handler from an object

Synopsis
void xvw_remove_event(

xvobject object,
unsigned long event_mask,
void (*routine)(xvobject, kaddr, XEvent *, int *),
kaddr client_data)

Input Arguments
object

visual object from which to remove installed event handler
event_mask

ev ent mask representing the event for which the event handler was being fired
routine

the event handler to remove
client_data

private data being used by the event handler

Description
Removes an event handler from a visual object.

The following example creates a red marker visual object. It installs an event handler which will turn the
marker from red to blue when the button is pressed on the marker, and will run the marker back to red when
the button is released. In this example, it is necessary to pass an array of strings to the event handler; this is
done via the client_data argument.

F.2.4. Event Handler Example

#include <envision.h>

void marker_event_handler PROTO((xvobject, kaddr, XEvent *, int *));

/*
* This is an example of a marker object using an event handler.
* It creates a single marker annotation, and adds an event handler, so that
* button press on the marker turns it blue! Button release turns it red again!
*/

2-44

Xvwidgets Program Services Volume III - Chapter 2

void main(
int argc,
char *argv[])

{
xvobject marker;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidget library */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create the bowtie marker in red at (0.5, 0.5) with scale of 4 */
marker = xvw_create_marker(NULL, "marker");
xvw_set_attributes(marker,

XVW_MARKER_XPLACEMENT, 0.5,
XVW_MARKER_YPLACEMENT, 0.5,
XVW_FOREGROUND_COLOR, "red",
XVW_GRAPHICS_MARKERTYPE, KMARKER_BOW_TIE,
XVW_GRAPHICS_MARKERSCALE, 4,
NULL);

/*
* Add the event handler "marker_event_handler" on the marker,

* which will be invoked on both button press & button release.
*/
xvw_add_event(marker, ButtonPressMask | ButtonReleaseMask,

marker_event_handler, NULL);

/* display and run */
xvf_run_form();

}

/*
* here is the event handler invoked by button press &
* button release events that happen on the marker.
*/

void marker_event_handler(
xvobject object,
kaddr client_data,
XEvent *event,
int *dispatch)

{
if (event->type == ButtonPress)
{

xvw_set_attribute(object, XVW_FOREGROUND_COLOR, "blue");
kfprintf(kstderr, "Turning marker blue\n");

}
else if (event->type == ButtonRelease)
{

xvw_set_attribute(object, XVW_FOREGROUND_COLOR, "red");
kfprintf(kstderr, "Turning marker red\n");

}
}

2-45

Xvwidgets Program Services Volume III - Chapter 2

F.3. Using Action Handlers

Action handlers are similar to event handlers; the difference is that the action that is specified for an action
handler is more specific than the event that is specified for an event handler. For example, an event handler
may be used to specify that control flow be div erted to a subroutine when any key on the keyboard is pressed,
by installing the event handler with the event mask "KeyPress". However, this may not be specific enough; in
some cases, it is necessary to indicate which key press which will divert control to the handler. In this case, an
action handler might be installed on the object, where the action could be specified as the carriage return, a
capital "Q", or the "Escape" key. Compound actions can also be specified, such as the first mouse button
pressed in conjunction with the key "Y" being pressed, or the third mouse button released in conjunction with
the META key being pressed.

To install an action handler for a particular event on a GUI or visual object, the following routines are used.

F.3.1. xvw_add_action() — add an action handler to an object

Synopsis
void xvw_add_action(

xvobject object,
char *action,
void (*routine)(xvobject, kaddr, XEvent *),
kaddr client_data,
int override)

Input Arguments
object

object on which to add action handler (note that you may not pass NULL)
action

the action which will invoke the action handler
routine

the action handler to install
client_data

private data to be used by action handler
override

TRUE if the action specified should override any previously installed action handlers, FALSE if the
action specified should augment any previously installed action handlers

Description
Adds an action handler to a GUI or visual object. When the specified action occurs, the action handler
will be called.

Since the X Toolkit cannot support action handling on gadgets, we support them by placing the action
handler on the parent of the gadget and then directing the dispatch of the action handler directly.

2-46

Xvwidgets Program Services Volume III - Chapter 2

The action handler must be associated with an object; only when the specified action(s) occur in the
specified object will the action handler be called (ie, the same action in another object will be ignored).

An action handler must be declared in the following form:

void action_handler(
xvobject object,
kaddr client_data,
XEvent *event)

object -
The object for which the action handler was invoked.
It will not be NULL.

client_data -
The pointer to the client data, used to pass parameters
from the application to the action handler.

event -
This is a pointer to the XEvent union which caused the
action handler to be invoked. For details on the XEvent
union, see Chapter 8 of the Xlib Programming Manual,
by Adrian Nye; the definition of the XEvent union is on
page 232.

Note that the xvw_add_action() routine takes an action string. The action string indicates which action will
invoke the action handler. The action string contains triangular brackets "<" and ">" around the desired action;
it may also contain optional modifiers, and in the case of some action, by a "detail" field that specifies addi-
tional information about the action.

For those who are familiar with X Toolkit programming, the action string is simply the first part of a transla-
tion table which specifies the event. For more information on action strings, please see Chapter 7.1 of the X
Toolkit Intrinsics Programming Manual, by Adrian Nye and Tim O’Reilly.

Examples of some common action strings include:
<Btn1Up>(2) Invoke the handler on double-click of Button1.
Shift<Btn2Down> Invoke the handler on Button2 click if the shift key is down.
<Key>Return Invoke the action handler when the carriage return key is pressed
<Meta>Q Invoke the handler when the Q key is pressed together with the Meta key
<Ctrl>C Invoke the handler on CTRL-C
<Key>? Invoke the action handler when the question mark is pressed.

Button Press Actions
These actions specify a mouse button press while focus is in the object:
<BtnDown>, <Btn1Down>, <Btn2Down>, <Btn3Down>

2-47

Xvwidgets Program Services Volume III - Chapter 2

Button Release Actions
These actions specify a mouse button release while focus is in the object:
<BtnUp>, <Btn1Up>, <Btn2Up>, <Btn3Up>

Key Press Actions:
These actions specify a key press while focus is in the object:
<Key>, <KeyDown>, <Ctrl>, <Meta>, <Shift>
Note that <Key> refers to any key being pressed, while <Key>x refers to the "x" key being
pressed.

KeyRelease Actions
This action specifies a key release while focus is in the object:
<KeyUp>
Note that <KeyUp> refers to any key being released, while <Key>x refers to the "x" key being
released.

MotionNotify Actions:
These actions specify movement of the pointer in the object:
<Motion>, <BtnMotion>, <Btn1Motion>, <Bt21Motion>, <Btn3Motion>

EnterNotify:
This action specifies movement of the pointer into the object:
<Enter>

LeaveNotify:
This action specifies movement of the pointer out of the object:
<Leave>

The actions listed above are the most common; there are others, which may be found in the "Abbreviations"
column of Table 7-1 on page 192 of the X Toolkit Intrinsics Programming Manual, by Adrian Nye and Tim
O’Reilly.

To delete an action handler that is currently installed on a visual object, the xvw_remove_action() routine is
used:

F.3.2. xvw_remove_action() — remove an action handler from an object

Synopsis
void xvw_remove_action(

xvobject object,
char *action,
void (*routine)(xvobject, kaddr, XEvent *),
kaddr client_data)

2-48

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
object

object from which to remove action handler
action

the action which was invoking the action handler
routine

the action handler to de-install
client_data

pointer to private application data that was being passed to action handler

Description
Removes an action handler from a GUI or visual object.

F.3.3. Action Handler Example

This example demonstrates how an action handler can be installed on a hybrid xvroutine. Here, the action
handler is used to quit the program when the user hits ’q’, since a hybrid xvroutine has no formal GUI.

F.4. Using Input Handlers

Sometimes it is necessary for an application to perform a particular action when a certain file has been updated
externally. The xvwidgets library supports this capability via a file detection mechanism. If and when the file
in question is updated, software control can be passed to a subroutine defined by the application. The subrou-
tine to which software control is passed when the file being monitored undergoes a change is called an input
handler.

The xvwidgets library allows an input handler to be installed on a file where the file is specified either by its
name or by its file identification number. When the input handler is to be installed on the file using the file-
name, the following routine is used:

F.4.1. xvw_add_detectfile() — add a (file) detect handler to an object

Synopsis
void xvw_add_detectfile(

xvobject object,
char *filename,
double argtime,
int (*routine)(xvobject, char *, kaddr),
kaddr client_data)

2-49

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
object

object on which to place the detect handler. Pass NULL if the detect handler is to be invoked in gen-
eral, and not associated with any particular object.

filename
the name of the file to be monitored.

argtime
the interval (in seconds) at which the file should be checked for changes.

routine
the detect handler routine to be called when change to the file is detected.

client_data
pointer to client data that will be passed to detect handler

Description
Causes a detection mechanism to be installed on the specified file. After the specified interval of time
has elapsed, the file will be checked for any modification. If a modification to the file is detected, then
the specified detect handler is called.

The detect handler can be associated with an object, so that file detection is automatically discontinued
when the object is destroyed. If NULL is passed for the object, then the detect handler is added to the
global file detection list.

The detect file callback must be declared in the following
form:
int detect_handler(

xvobject object,
char *filename,
kaddr client_data)

object -
If xvw_add_detectfile() is called with a particular
xvobject, that object will be passed into the detect handler.

filename -
This is the name of the file being monitored for change.

client_data -
The pointer to the client data, used to pass parameters
from the application to the detect handler.

To discontinue monitoring of a file currently being monitored, and to remove an input handler currently
installed a file using its filename, the following routine is used:

2-50

Xvwidgets Program Services Volume III - Chapter 2

F.4.2. xvw_remove_detectfile() — remove a (file) detect handler from an object

Synopsis
void xvw_remove_detectfile(

xvobject object,
char *filename,
int (*routine)(xvobject, char *, kaddr),
kaddr client_data)

Input Arguments
object

object in which to remove the detect file handler, if NULL then removed from the global list.
filename

the name of the file that was being monitored.
routine

the detect handler routine which was being called when change to the file was detected.
client_data

pointer to private application data that was being passed to action handler

Description
Causes the detection mechanism previously installed with xvw_add_detectfile() to be removed from
the specified file descriptor.

If the detect handler was associated with an object, the file detection will be automatically removed
when the object is destroyed. Alternatively, it can be removed before the object is destroyed by using
this routine. If NULL was passed to xvw_add_detectfile() for the object, then you must call this rou-
tine if you need to remove the installed detect handler.

As an alternative to monitoring a file that is specified by its filename, an input handler may be installed on a
file where the file is specified by its file identification number. Note that both stdin and stdout can be moni-
tored in this way. When the input handler is to be installed on the file using this method, the following routine
is used:

F.4.3. xvw_add_detectfid() — add (fid) input handler to an object

Synopsis
void xvw_add_detectfid(

xvobject object,
int fid,
void (*routine)(xvobject, int, kaddr),
kaddr client_data)

2-51

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
object

object on which to place the input handler. Pass NULL if the input handler is to be invoked in general,
and not associated with any particular object.

fid
the file descriptor which will be monitored for input (or output)

routine
the input handler routine to be called when change on the fid is detected

client_data
pointer to client data that will be passed to input handler

Description
Causes a detection mechanism to be installed on the specified file descriptor; the file descriptor will be
polled intermittently for change (input or output). If a change in the file descriptor is detected, then the
specified input handler is called.

The input handler can be associated with an object, so that fid detection is automatically discontinued
when the object is destroyed. If NULL is passed for the object, then the input handler is added to the
global file detection list.

The detect file callback must be declared in the following
form:
int input_handler(

xvobject object,
int fid,
kaddr client_data)

object -
If xvw_add_detectfid() is called with a particular
xvobject, that object will be passed into the input handle

r.

fid -
This is the file descriptor being monitored for change.

client_data -
The pointer to the client data, used to pass parameters
from the application to the input handler.

To discontinue monitoring of a file descriptor currently being monitored, and to remove an input handler cur-

2-52

Xvwidgets Program Services Volume III - Chapter 2

rently installed, the following routine is used:

F.4.4. xvw_remove_detectfid() — remove (fid) input handler from an object

Synopsis
void xvw_remove_detectfid(

xvobject object,
int fid,
void (*routine)(xvobject, int, kaddr),
kaddr client_data)

Input Arguments
object

object for which to remove the input file handler, or NULL if the input handler was being invoked in
general, not associated with a particular object.

fid
the file descriptor on which input (or output) was being detected.

routine
the input handler that was being called when change on the fid was detected

client_data
pointer to client data which was being passed to input handler

Description
Causes the detection mechanism previously installed with xvw_add_detectfid() to be removed from the
specified file descriptor.

If the input handler was associated with an object, the file detection will be automatically removed
when the object is destroyed. Alternatively, it can be removed before the object is destroyed by using
this routine. If NULL was passed to xvw_add_detectfid() for the object, then you must call this routine
if you need to remove the installed input handler.

F.5. Using Timeouts

Timeouts provide a mechanism to redirect software control flow to a particular routine after a specified time
interval. Depending on how the value of the stop_timer argument is set within the timeout, the timeout may be
called once, a number of times until a particular condition is met, or may be repeated indefinitely.

Sometimes a timeout is associated with a particular object. For example, the image object uses a timeout to
check the file containing the displayed image every so often, so that it can update the displayed image if the
contents of the file change.

2-53

Xvwidgets Program Services Volume III - Chapter 2

In other instances, a timeout is not associated with a particular object, but simply gets called after a particular
amount of time passes, regardless of the objects that are displayed.

To install a timer for a particular time interval, the xvw_add_timeout() routine is used.

F.5.1. xvw_add_timeout() — add a timeout to an object

Synopsis
void xvw_add_timeout(

xvobject object,
double interval,
void (*routine)(xvobject, kaddr, int *),
kaddr client_data)

Input Arguments
object

object on which to install timeout
interval

the time interval (in seconds) after which the timeout will be called.
routine

the timeout routine to be installed
client_data

private data to be used by the timeout

Description
Adds a timeout to a GUI or visual object. After the specified interval of time has elapsed, the timeout
will be called. Since the X Toolkit cannot support timeouts on gadgets, we support them by placing
the timeout on the parent and then directing the dispatch of the timeout directly.

The timeout can be associated with an object, so that it will be automatically removed when the object
is destroyed. If NULL is passed for the object, then the timeout is added to the global file detection
list.

An timeout must be declared in the following form:

void timeout(
xvobject object,
kaddr client_data,
int *stop_timer)

object -
If xvw_add_timeout() is called with a particular
xvobject, that object will be passed into the timeout.

client_data -

2-54

Xvwidgets Program Services Volume III - Chapter 2

The pointer to the client data, used to pass parameters
from the application to the timeout.

stop_timer -
By default, the timeout will be invoked again after
the specified time interval passes once more. To stop
the timeout from being called after the next time
interval is up, set the stop_timer to TRUE, as in:
*stop_timer = TRUE;

Note that the xvw_add_timeout() routine takes an interval. The interval indicates how often, in seconds, the
timeout is to be called. If the interval was set to 0.2, this would indicate that the timeout was to be called every
0.2 seconds, or 5 times a second.

To remove a currently installed timeout, the xvw_remove_timeout() routine is used:

F.5.2. xvw_remove_timeout() — removes a timeout from an object

Synopsis
void xvw_remove_timeout(

xvobject object,
void (*routine)(xvobject, kaddr, int *),
kaddr client_data)

Input Arguments
object

object from which to remove installed timeout
routine

the timeout to remove
client_data

private data being be used by the timeout

Description
Remove a timeout from a object or gadget.

F.5.3. Timeout Example

The following example uses a timeout:

#include "design.h"

/*
* In this example, a timeout is used to update a label object every second.
*/

2-55

Xvwidgets Program Services Volume III - Chapter 2

void timeout PROTO((xvobject, kaddr, int *));

void main(
int argc,
char *argv[])

{
xvobject manager;
xvobject label;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets library */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror("example", "main", "Cannot open display");
kexit(KEXIT_FAILURE);

}

/* create a manager backplane */
manager = xvw_create_manager(NULL, "back");

/* a single button on the manager */
label = xvw_create_label(manager, "label");
xvw_set_attributes(label,

XVW_LABEL, "0 seconds have passed",
XVW_FORCE_REDISPLAY, TRUE,
NULL);

/* add callback to button */
xvw_add_timeout(label, 1.0, timeout, NULL);

/* display and run */
xvf_run_form();

}

/*
* here’s the timeout
*/

void timeout(
xvobject object,
kaddr client_data,
int *stop_timer)

{
char temp[KLENGTH];
static int count = 1;

ksprintf(temp, "%d seconds have passed", count++);
xvw_set_attribute(object, XVW_LABEL, temp);

}

F.6. About Client Data

Callbacks, event handlers, action handlers, input handlers, and timeouts all pass parameters via a client data
pointer. The client data pointer serves as a mechanism with which the application can bundle up all the

2-56

Xvwidgets Program Services Volume III - Chapter 2

parameters and pass them to the appropriate installation function (xvw_add_callback(), xvw_add_event(),
xvw_add_action(), xvw_add_detectfile(), xvw_detectfid(), or xvw_add_timeout(), depending on context). Inter-
nal routines in the xvwidgets library are responsible for passing the client data along to the installed handler
when it is called. Inside the handler, the client data pointer is cast back to the appropriate data type before it is
used.

Only a pointer may be used as client data; it is defined as type kaddr, which is the VisiQuest 2001 method of
specifying a pointer of unspecified data type. The type of pointer is defined by the application; it might be a
pointer to a scalar, a pointer to an array, or a pointer to a data structure that is defined by the application.

First, decide on the number and data type of the arguments that will be needed by the callback, event handler,
action handler, or input handler.

If the handler needs NO arguments, pass NULL as the client data parameter to the installation function. Inside
the handler, the client data argument will remain unused.

If the handler needs a single argument of an already-defined data type, declare a variable which is a pointer to
the desired data type in the installation function. Allocate the pointer if necessary, and pass the initialized
pointer as the client data parameter to the installation function. Inside the handler, cast the client data argu-
ment to the pointer type, and use the pointer variable as desired.

If the handler needs more than one argument, it will be necessary to define a new data structure, one that con-
tains an element of appropriate data type for each of the required arguments. Be sure that both the routine
which calls the installation function and the handler itself has access to the new data structure. Declare a vari-
able which is a pointer to the data structure in the installation function. Dynamically allocate the pointer, and
initialize each field with the value that you would have used if you had been preparing to pass the parameters
to the handler "normally". Pass the pointer to the allocated, initialized data structure as the client data to the
installation function.

Then, inside the handler, cast the client data pointer to the same data type that you used when allocating and
initializing it. After the client data pointer has been cast, the contents can be referenced normally and the val-
ues will be the same as when they were initialized. anything as the client data.

F.6.1. Client Data Example 1

In this example, an event handler is installed on an image visual object. The event handler will quit the pro-
gram when the user does a button press. Here, we need to pass the image data stored in the kobject structure as
the client data; however, kobjects can be passed to event handlers directly (without using "&") since they are,
by definition, already pointers.

#include <design.h>

/*
* This program demonstrates how to use an event handler and
* use the client_data pointer to pass in a parameter.
* It creates a colored backplane and adds an event handler
* that allows the user to quit the program by clicking the mouse
* in the backplane; client_data is used to pass in the color name
*/

void quit_program PROTO((xvobject, kaddr, XEvent *, int *));

2-57

Xvwidgets Program Services Volume III - Chapter 2

void main(
int argc,
char *argv[])

{
xvobject backplane; /* the manager object */

char *color = "navy";

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets library */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create the manager object (default toplevel) */
backplane = xvw_create_manager(NULL, "backplane");

/* specify size, make the backplane coral */
xvw_set_attributes(backplane,

XVW_WIDTH, 300,
XVW_HEIGHT, 300,
XVW_BACKGROUND_COLOR, color,
NULL);

/*
* add the event handler to quit the program. pass in the

* color string as the client_data so we can use it inside
* the event handler.

*/
xvw_add_event(backplane, ButtonPressMask, quit_program, color);

/* display and run */
xvf_run_form();

}

/*
* Event handler to quit program on Button Press.
* Uses the client_data pointer so that it has access
* to the color string.
*/

void quit_program(
xvobject object, /* the backplane */
kaddr client_data, /* used to pass in the color */
XEvent *event, /* also not used - we know what the event was. */
int *dispatch) /* if we didn’t want any other event handler to

be called after this one is finished, we’d set
*dispatch = FALSE */

{
char *color = (char *) client_data;

kinfo (KSTANDARD, "This was a %s backplane.", color);
xvw_destroy(object);
kexit(KEXIT_SUCCESS);

}

2-58

Xvwidgets Program Services Volume III - Chapter 2

F.6.2. Client Data Example 2

In this example, the same callback is installed on a set of button GUI objects; the callback uses the integer but-
ton ID number (passed in as client_data) in the information that is popped up.

#include "design.h"

/*
* This example program puts up 5 buttons in a diagonal pattern.
* It adds very simple callbacks to the buttons. The callback uses
* the integer button ID number (passed in as client_data) in the
* information that is popped up.
*/

static void button_cb PROTO((xvobject, kaddr, kaddr));

#define BUTTON_NUM 5

void main(
int argc,
char *argv[])

{
int i;
int *button_id;
xvobject manager;
xvobject button;
xvobject offset;
static char *names[] = {"AAA", "BBB", "CCC", "DDD", "EEE"};

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidget library */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "Cannot open display");
kexit(KEXIT_FAILURE);

}

/* create the manager backplane */
manager = xvw_create_manager(NULL, "back");

/* offset will be used to position set of buttons */
offset = NULL;

/* create set of buttons */
for (i = 0; i < BUTTON_NUM; i++)
{

/* create the button, set attributes */
button = xvw_create_button(manager, "button");
xvw_set_attributes(button,

XVW_LABEL, names[i], /* set label */
XVW_RIGHT_OF, offset, /* R of last button */
XVW_BELOW, offset, /* Below last button */
XVW_CHAR_WIDTH, 10.0, /* 10 chars wide */
XVW_CHAR_HEIGHT, 2.0, /* 2 char high */
XVW_BORDER_WIDTH, 1, /* thin border */
NULL);

2-59

Xvwidgets Program Services Volume III - Chapter 2

/* allocate the client data - here, we’ll need to pass an int */
button_id = (int *) kmalloc(sizeof(int));

/* initialize the integer value */
*button_id = i+100;

/* add the callback, passing the integer pointer as client data */
xvw_add_callback(button, XVW_BUTTON_SELECT, button_cb, button_id);

/* update offset, to achieve diagonal layout effect */
offset = button;

}

/* display and run */
xvf_run_form();

}

/*
* this is the button callback, which expects an integer pointer
* as its client_data so it can print out the button ID number.
*/

static void button_cb (
xvobject object,
kaddr client_data,
kaddr call_data)

{
char *label;
int *button_id; /* client data will be an integer pointer */

button_id = (int *) client_data; /* cast client_data to int pointer */

/* to add interest to popup info message, get the button label */
xvw_get_attribute(object, XVW_LABEL, &label);

/* use the int pointer as desired, after cast */
kinfo(KSTANDARD, "Button click on %s, ID number %d\n",

label, *button_id);
}

F.6.3. Client Data Example 3

In this example, the callback installed on a list item selection needs 4 parameters which are passed using the
client_data structure.

#include "design.h"

/*
* In this example, a list GUI object offering a choice of three animals is
* displayed. The user is allowed to click on an item, causing a popup
* with information about the animal to be displayed.
* The callback installed on list item selection needs an array
* of structures passed in, which is allocated and passed into the callback
* using the client_data structure. Because it is a list GUI object, the
* call_data pointer is also used.
*/

2-60

Xvwidgets Program Services Volume III - Chapter 2

/*
* here is the structure containing the information we need,
* an array of which to be passed to the callback as the client_data
*/

typedef struct _AnimalInfo {

int id;
char *habitat;
char *diet;
int endangered;

} AnimalInfo;

/*
* defines to identify animal
*/

#define MONKEY 0
#define WOLF 1
#define ELEPHANT 2

/*
* prototype for callback
*/

void print_info PROTO((xvobject, kaddr, kaddr));

/*
* here’s the main program
*/

void main(
int argc,
char **argv,
char **envp)

{
xvobject comp_list;

xvobject actual_list;
xvobject manager;
int foreign;
AnimalInfo **animal_info;

static char *animals[] = { "monkey", "wolf", "elephant" };
int num = knumber(animals);

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror("example", "main", "Cannot open display");
kexit(KEXIT_FAILURE);

}

/* create manager backplane, width 10, height 4 */
manager = xvw_create_manager(NULL, "back");
xvw_set_attributes(manager,

XVW_CHAR_WIDTH, 15.0,
XVW_CHAR_HEIGHT, 4.0,
NULL);

2-61

Xvwidgets Program Services Volume III - Chapter 2

/* create compound list object, tack it to parent */
comp_list = xvw_create_list(manager, "comp_list");
xvw_set_attribute(comp_list, XVW_TACK_EDGE, KMANAGER_TACK_ALL);

/* get actual list object from compound list object */
actual_list = xvw_retrieve_list(comp_list);

/* add list contents to actual list */
xvw_change_list(actual_list, animals, num, TRUE);

/*
* allocate & initialize client_data
*/
animal_info = (AnimalInfo **) kcalloc(3, sizeof(AnimalInfo *));

animal_info[MONKEY] = (AnimalInfo *) kcalloc(1, sizeof(AnimalInfo));
animal_info[MONKEY]->id = 1230;
animal_info[MONKEY]->habitat = kstrdup("South America");
animal_info[MONKEY]->diet = kstrdup("Omniverous");
animal_info[MONKEY]->endangered = FALSE;

animal_info[WOLF] = (AnimalInfo *) kcalloc(1, sizeof(AnimalInfo));
animal_info[WOLF]->id = 1894;
animal_info[WOLF]->habitat = kstrdup("North America");
animal_info[WOLF]->diet = kstrdup("Carnivorous");
animal_info[WOLF]->endangered = TRUE;

animal_info[ELEPHANT] = (AnimalInfo *) kcalloc(1,sizeof(AnimalInfo));
animal_info[ELEPHANT]->id = 2113;
animal_info[ELEPHANT]->habitat = kstrdup("Africa");
animal_info[ELEPHANT]->diet = kstrdup("Herbivorous");
animal_info[ELEPHANT]->endangered = TRUE;

/*
* add callback to list selection that will print info.
* pass the "animal_info" data structure as client_data
*/

xvw_add_callback(actual_list, XVW_LIST_ITEM_SELECT, print_info,
animal_info);

/* display and run */
xvf_run_form();

}

/*
* callback prints information about the animal chosen from the list
*/

void print_info(
xvobject button,
kaddr client_data,
kaddr call_data)

{
AnimalInfo **animal_info; /* array of animal info structures */
xvw_list_struct *list_return; /* holds info about selected item */
int animal_index; /* index of selected animal */
char *animal_name; /* name of selected animal */

/* cast client data pointer to expected data type (defined by us) */
animal_info = (AnimalInfo **) client_data;

2-62

Xvwidgets Program Services Volume III - Chapter 2

/* cast call_data pointer to data type (defined by list gui object) */
list_return = (xvw_list_struct *) call_data;

if (list_return == NULL || animal_info == NULL) return;

/* index and string associated w/ selection stored in list struct */
animal_index = list_return->list_index;
animal_name = list_return->string;

if (animal_index == -1 || animal_name == NULL) return;

kinfo(KSTANDARD, "Selected %s,\n Index %d,\n ID %d,\n Habitat %s,\n %s Diet",
animal_name, animal_index,
animal_info[animal_index]->id,
animal_info[animal_index]->habitat,
animal_info[animal_index]->diet);

if (animal_info[animal_index]->endangered)
kinfo(KSTANDARD, "Warning! This is an endangered species");

}

G. General Utilities For Visual & GUI Objects

There are a variety of basic functions that are offered by the xvwidgets library for use with visual and GUI
objects. Some functions are front-ends for X Toolkit functions; these must always be used instead of their X
Toolkit counterparts in order to ensure correctness of an application which depends on the xvwidgets library,
and in order to maintain its support of all three widget sets. A summary of these functions is given in this sec-
tion. Other functions are simply provided for convenience. Both types of functions are grouped together in
this section.

G.1. xvw_appcontext() — return the application context associated with a object

Synopsis
XtAppContext xvw_appcontext(

xvobject object)

Input Arguments
object

object for which to get the application context

Returns
The application context associated with the object on success, NULL on failure

Description
Returns the application context associated with the object. Note that this is the GUI & Visualization

2-63

Xvwidgets Program Services Volume III - Chapter 2

services equivalent of XtWidgetToApplicationContext(). If object is NULL, returns the default applica-
tion context.

Restrictions
Restrictions on data or input as applicable

G.2. xvw_busy() — set an object to be busy or not busy

Synopsis
void xvw_busy(

xvobject object,
int busy)

Input Arguments
object

the object to make "busy" or "not busy"
busy

TRUE to set object "busy", FALSE to set object "not busy"

Description
Sets an object to be "busy" or "not busy". If an object is busy, then all input events to the object are
ignored and a "watch" cursor is installed to alert the user that the object will not accept input.

G.3. xvw_check_managed() — see if an object is managed

Synopsis
int xvw_check_managed(

xvobject object)

Input Arguments
object

the object to check

Returns
TRUE if the object is being managed, FALSE otherwise

2-64

Xvwidgets Program Services Volume III - Chapter 2

Description
Indicates whether or not an object is currently having its geometry managed by its parent. Note that an
object cannot be made visible until it is managed.

G.4. xvw_check_mapped() — see if an object is mapped

Synopsis
int xvw_check_mapped(

xvobject object)

Input Arguments
object

the object to check

Returns
TRUE if the object is mapped, FALSE otherwise

Description
Indicates whether or not an object is currently mapped.

G.5. xvw_check_menuactive() — see if an object’s internal menuform is displayed

Synopsis
int xvw_check_menuactive(

xvobject object)

Input Arguments
object

the GUI or visual object to check

Returns
TRUE if the internal menuform for the object is currently displayed, FALSE otherwise

Description
Indicates whether or not the internal menuform for a GUI or visual object is currently being displayed.

2-65

Xvwidgets Program Services Volume III - Chapter 2

G.6. xvw_check_menuexist() — check if an object has an internal menuform

Synopsis
int xvw_check_menuexist(

xvobject object)

Input Arguments
object

the object for which to check for internal menuforms

Returns
TRUE if the object has an internal menuform associated with it, FALSE otherwise.

Description
Checks whether or not a GUI or visual object has an internal menuform associated with it.

G.7. xvw_check_realized() — see if an object is realized

Synopsis
int xvw_check_realized(

xvobject object)

Input Arguments
object

the object to be checked

Returns
TRUE if the object has been realized, FALSE otherwise

Description
Indicates whether or not an object has been realized. When an object is realized, it has its windows
created on the display, and its final initializations done. The realization of a GUI or visual object is
delayed until xvf_run_form() is called (if the object is created before the call to xvf_run_form()), or
until software control flow is div erted back to the xvf_run_form() loop (f the object is created after the
call to xvf_run_form()).

2-66

Xvwidgets Program Services Volume III - Chapter 2

G.8. xvw_check_sensitive() — see if an object is sensitive

Synopsis
int xvw_check_sensitive(

xvobject object)

Input Arguments
object

the object to check

Returns
TRUE if the object is sensitive, FALSE otherwise.

Description
Indicates whether or not an object is currently sensitive. Note that a GUI or visual object may be made
insensitive using xvw_sensitive(). When an object is made insensitive, it will ignore all attempts at user
input; it will also appear "dim" or "stippled" to indicate its insensitive state (a current limitation
restricts this capability to widgets only; insensitive gadgets will not accept input, but they cannot pro-
vide a visual cue to reflect their insensitive state). All objects are normally sensitive.

G.9. xvw_check_subclass() — check the subclass of an object

Synopsis
int xvw_check_subclass(

xvobject object,
xvclass wclass)

Input Arguments
object

object for which to check the subclass class - the class to be checked for

Returns
TRUE if the object has the specified subclass, FALSE otherwise

Description
Checks if the object has the specified subclass. Example1: if the object passed in was a zoom object,
and the class given was ImageClass, the routine would return TRUE since the zoom object is sub-
classed off the image object. Example2: if the object passed in was a zoom object, and the class given
was ColorClass, the routine would return TRUE, since the zoom object is subclassed off the image

2-67

Xvwidgets Program Services Volume III - Chapter 2

object and the image object is subclassed off the color object. Example3: if the object passed in was a
zoom object, and the class given was PanIconClass, the routine would return FALSE, since the PanI-
conClass does not appear in the inheritance tree of the zoom object.

G.10. xvw_check_toplevel() — see if object specified is a toplevel, or see if a toplevel
exists

Synopsis
int xvw_check_toplevel(

xvobject object)

Input Arguments
object

the object to check, or NULL to check for any toplevels

Returns
TRUE if the object specified is a toplevel object (or if any toplevel objects exist), FALSE otherwise.

Description
If the object is specified as non-NULL, returns whether or not the object is a toplevel object. If NULL
is passed for the object parameter, returns whether or not any toplevel objects exist.

G.11. xvw_check_visible() — see if an object is visible

Synopsis
int xvw_check_visible(

xvobject object)

Input Arguments
object

the object to check

Returns
TRUE if the object is visible, FALSE otherwise

Description
Indicates whether or not an object is currently visible.

2-68

Xvwidgets Program Services Volume III - Chapter 2

G.12. xvw_children() — get the children of an object

Synopsis
xvobject *xvw_children(

xvobject object,
xvclass wclass,
size_t *num_children)

Input Arguments
object

object for which to find children
wclass

the desired class of the children, or NULL for all children

Output Arguments
num_children

the number of children being returned in the xvobject array

Returns
An array of children upon success, NULL on failure

Description
Returns an array of xvobjects containing the children of the object specified. If desired, an object class
may be specified so that only children of the specified class are returned.

Side Effects
The array in which the children returned is allocated, and must be freed by the caller.

G.13. xvw_colormap() — get the colormap associated with a object

Synopsis
Colormap xvw_colormap(

xvobject object)

Input Arguments
object

object to for which get the colormap; pass NULL to get the default colormap.

2-69

Xvwidgets Program Services Volume III - Chapter 2

Returns
The colormap associated with the object (or the default colormap) on success, NULL on failure

Description
Returns the colormap associated with the object. If the object is passed as NULL, it will return the
colormap associated with the default display.

G.14. xvw_class() — get the class of the object

Synopsis
xvclass xvw_class(

xvobject object)

Input Arguments
object

object for which return the class

Returns
The class associated with the object on success, NULL on failure

Description
Returns the class associated with the object.

G.15. xvw_create() — create a new object

Synopsis
xvobject xvw_create(

xvobject parent,
int transient_parent,
int managed,
kstring name,
xvclass wclass)

Input Arguments
parent

the parent object; pass NULL if a default toplevel object is to be created automatically to contain the
object.

2-70

Xvwidgets Program Services Volume III - Chapter 2

transient_parent
only used if the parent object passed as NULL, TRUE will cause the default toplevel to be created as a
transient shell while FALSE will cause the default toplevel to be created as an application shell.

managed
TRUE if the object should be managed upon creation, FALSE if the object should only be instaniated

name
the object name class - the class of the object

Returns
The newly created GUI or visual object on success, NULL on failure

Description
Creates and returns a new GUI or visual object of the desired object class. Note that use of this gener-
alized routine is not as encouraged as use of the appropriate specific object creation routine. For exam-
ple, if you would like to create a button object, it is generally easier to use xvw_create_button().

G.16. xvw_destroy() — destroy an object

Synopsis
void xvw_destroy(

xvobject object)

Input Arguments
object

the object to be destroyed

Description
Destroy the visual or GUI object specified. Not only does this destroy the windows used by the object,
it also frees all memory associated with the object. You may never refer to the object again, after mak-
ing this call. Any children of the object will also be recursively destroyed. The parent of the object,
however, will be left intact.

G.17. xvw_display() — returns the display associated with a object

Synopsis
Display *xvw_display(

xvobject object)

2-71

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
object

object for which to identify the display

Returns
The display associated with the object or gadget on success, NULL on failure

Description
Returns the display associated with the object. Note that this is the GUI & Visualization services
equivalent of XtDisplay(). If object is NULL, returns the default display.

G.18. xvw_duplicate() — duplicate an object

Synopsis
xvobject xvw_duplicate(

xvobject object)

Input Arguments
object

the object to be duplicated

Returns
The duplicated object on success, NULL on failure.

Description
Duplicates the specified GUI or visual object.

G.19. xvw_font() — return the font being used by a object

Synopsis
XFontStruct *xvw_font(

xvobject object)

Input Arguments
object

object to get the font struct from

2-72

Xvwidgets Program Services Volume III - Chapter 2

Returns
The font struct associated with the object on success, NULL on failure

Description
Returns the display font being used by an object; in other words, this is the setting of the
XVW_FONT attribute of the object. If the object specified does not have the XVW_FONTE attribute
set, the font being used by its parent will be returned. Recursion up the inheritance tree will be done
until a setting for the font is found.

G.20. xvw_fontname() — return the font name being used by an object

Synopsis
char *xvw_fontname(

xvobject object)

Input Arguments
object

object for which to query font name

Returns
The fontname associated with the object on success, NULL on failure

Description
Returns the name of the font being used by an object; in other words, this is the setting of the
XVW_FONTNAME attribute of the object. If the object specified does not have the XVW_FONT-
NAME attribute set, the font being used by its parent will be returned. Recursion up the inheritance
tree will be done until a setting for the font name is found.

G.21. xvw_geometry() — get the geometry of an object

Synopsis
int xvw_geometry(

xvobject object,
int *x,
int *y,
unsigned int *width,
unsigned int *height,
unsigned int *border_width)

2-73

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
object

object for which to return geometry

Output Arguments
x

x position of the object in pixels, with respect to its parent
y

y position of the object in pixels with respect to its parent
width

width of the object in pixels
height

height of the object in pixels
border_width

border width of the object in pixels

Returns
TRUE (1) on success, FALSE (0) on failure

Description
Returns the current geometry of the specified object, including (x,y) position with respect to the parent,
width, height, and border width. All geometry values are given in pixels.

G.22. xvw_lower() — lower an object

Synopsis
void xvw_lower(

xvobject object)

Input Arguments
object

the object to be lowered

Description
Lowers a GUI or visual object with respect to other siblings in the visual stacking order. If the object
overlaps another sibling object, this call will cause the object to be obscured by the sibling.

2-74

Xvwidgets Program Services Volume III - Chapter 2

G.23. xvw_manage() — manage an object

Synopsis
void xvw_manage(

xvobject object)

Input Arguments
object

the object to be managed

Description
Causes the specified GUI or visual object to have its geometry managed by its parent. Note that an
object cannot be made visible (mapped) until it is managed; however, by default most objects are man-
aged at the time when they are created. The panicon object is an exception to this rule.

G.24. xvw_map() — map an object

Synopsis
void xvw_map(

xvobject object)

Input Arguments
object

the object to be mapped

Description
Map the specified GUI or visual object, causing it to be displayed.

G.25. xvw_name() — get the name of the object

Synopsis
char *xvw_name(

xvobject object)

2-75

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
object

object for which to get the name

Returns
The name associated with the object on success, NULL on failure

Description
Returns the name associated with the object.

G.26. xvw_numchildren() — get the number of children of an object

Synopsis
int xvw_numchildren(

xvobject object,
xvclass wclass)

Input Arguments
object

object to for which to check number of children
wclass

the desired class of the children, or NULL for all children

Returns
Returns the number of children found

Description
Returns the number of children of the object. If desired, an object class may be specified, so that only
children of that class are counted.

G.27. xvw_object() — get the object associated with a particular widget

Synopsis
xvobject xvw_object(

Widget widget)

2-76

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
widget

widget for which to return the GUI or visual object

Returns
The object associated with the widget on success, NULL on failure

Description
Returns the GUI or visual object associated with the specified widget. If no object is associated with
the widget, then an object is created, the widget is assigned to the new object.

G.28. xvw_parent() — get the parent of an object

Synopsis
xvobject xvw_parent(

xvobject object)

Input Arguments
object

the object for which to return the parent.

Returns
The parent of the object on success, NULL on failure

Description
Returns the parent of the specified GUI or visual object.

G.29. xvw_place() — place an object on the screen

Synopsis
void xvw_place(

xvobject object,
xvobject placement,
int xoffset,
int yoffset)

2-77

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
object

the object to be placed
placement

object, CURSOR_PLACEMENT, or SCREEN_PLACEMENT that the object should centered around
xoffset

additional x placement offset
yoffset

additional y placement offset

Description
This utility is used for placing a created object on the display. This is used most often with custom
compound objects that are to be popped up after xvf_run_form() has already been called.

The object placement variable allows the programmer to place the object relative to another object.
The object’s placement is calculated to center the object relative to that of the placement object. Alter-
natively the placement object can be specified as CURSOR_PLACEMENT, which will center the
object around the cursor, or SCREEN_PLACEMENT which will center the object in the center of the
screen.

The xoffet & yoffset can be used to adjust the offset of the placement. The offset can be either neg-
ative or positive, but must be less than the screen dimensions. If the calculation of placed object would
cause it to not appear within the screen then the object’s placement will be readjusted to automatically
fit.

G.30. xvw_raise() — raise an object

Synopsis
void xvw_raise(

xvobject object)

Input Arguments
object

the object to be raised

Description
Raises a GUI or visual object with respect to other siblings in the visual stacking order. If the object
overlaps another sibling object, this call will cause the object to obscure the sibling.

2-78

Xvwidgets Program Services Volume III - Chapter 2

G.31. xvw_realize() — realize an object

Synopsis
void xvw_realize(

xvobject object)

Input Arguments
object

the object to be realized

Description
Realizes a GUI or visual object. The realization process involves creation of the actual (displayable)
parts of the object, including any window(s) that may be associated with the object.

An object cannot be made visible (mapped) until it is realized; however, by default most objects are
realized at the time when they are created.

G.32. xvw_refresh() — refreshes an object

Synopsis
void xvw_refresh(

xvobject object)

Input Arguments
object

the object to be refreshed

Description
Refreshes a GUI or visual object.

G.33. xvw_rootwindow() — get the root window associated with an object

Synopsis
Window xvw_rootwindow(

xvobject object)

2-79

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
object

object to get the rootwindow from

Returns
The rootwindow associated with the object on success, NULL on failure

Description
Returns the root window associated with the display on which the GUI or visual object appears. If the
object is passed in as NULL, then it returns the rootwindow of the default display.

G.34. xvw_sensitive() — sensitize or de-sensitize an object

Synopsis
void xvw_sensitive(

xvobject object,
int sensitive)

Input Arguments
object

the object to be affected
sensitive

FALSE if object is to be de-sensitized. TRUE if object is to be re-sensitized,

Description
Sensitizes or de-sensitizes a GUI or visual object. When an object is made insensitive, it will ignore
all attempts at user input; it will also appear "dim" or "stippled" to indicate its insensitive state (a cur-
rent limitation restricts this capability to widgets only; insensitive gadgets will not accept input, but
they cannot provide a visual cue to reflect their insensitive state). All objects are normally sensitive.

G.35. xvw_screen() — return the screen associated with a object

Synopsis
Screen *xvw_screen(

xvobject object)

Input Arguments
object

object for which to get the screen

2-80

Xvwidgets Program Services Volume III - Chapter 2

Returns
The Screen associated with the object on success, NULL on failure

Description
Returns the display screen associated with the object. Note that this is the GUI & Visualization ser-
vices equivalent of XtScreen(). If object is NULL, returns the default screen.

Restrictions
Restrictions on data or input as applicable

G.36. xvw_screennum() — return the screen number associated with an object

Synopsis
int xvw_screennum(

xvobject object)

Input Arguments
object

object for which to get the screen number

Returns
The screen number associated with the object on success, -1 on failure

Description
Returns the screen index number associated with the object. Note that this is the GUI & Visualization
services equivalent of XScreenNumberOfScreen(). If object is NULL, returns the default screen num-
ber.

G.37. xvw_sort() — sort a list of objects

Synopsis
int xvw_sort(

xvobject *object,
int num)

2-81

Xvwidgets Program Services Volume III - Chapter 2

Input Arguments
num

the number of objects in the array

Returns
TRUE (1) on success, FALSE (0) on failure

Description
This routine will sort a list of GUI and visual objects, first by their Y position, and then by their X
position.

G.38. xvw_toplevel() — get the toplevel object of an object

Synopsis
xvobject xvw_toplevel(

xvobject object)

Input Arguments
object

object for which to retrieve the toplevel

Returns
The toplevel associated with the object on success, NULL on failure

Description
Returns the toplevel object associated with a particular with an object.

G.39. xvw_unmanage() — unmanage an object

Synopsis
void xvw_unmanage(

xvobject object)

Input Arguments
object

the object to be unmanaged

2-82

Xvwidgets Program Services Volume III - Chapter 2

Description
Causes the specified GUI or visual object to have its geometry unmanaged by its parent. Unmanaging
an unmapped object means that it does not use resources of the X server, freeing them for use by other
objects. Furthermore, if the unmapped object does not require management by its parent, the calling
application will be able to manage currently mapped objects more efficiently. Note that an object can-
not be made visible if it is not managed.

G.40. xvw_unrealize() — un-realize an object

Synopsis
void xvw_unrealize(

xvobject object)

Input Arguments
object

the object to be un-realized

Description
When an object is realized, it has its windows created on the display, and its final initializations done.
This routine allows you to un-realize an object. This destroys the windows associated with an object
and its descentants, but does not destroy the instance of the object itself; the object can be still be re-
realized and used again at a later date.

G.41. xvw_unmap() — unmap an object

Synopsis
void xvw_unmap(

xvobject object)

Input Arguments
object

the object to be unmapped

Description
Unmap the GUI or visual object specified, causing it to "disappear".

2-83

Xvwidgets Program Services Volume III - Chapter 2

G.42. xvw_visual() — get the visual associated with an object

Synopsis
Visual *xvw_visual(

xvobject object)

Input Arguments
object

object to get the visual from

Returns
The default visual associated with the object or gadget

Description
Returns the visual associated with the object. If the object is NULL then it returns the visual associ-
ated with the default display.

G.43. xvw_widget() — get the widget (or gadget) associated with an object

Synopsis
Widget xvw_widget(

xvobject object)

Input Arguments
object

object for which to return the widget (or gadget)

Returns
The widget (or gadget) associated with the GUI or visual object on success, NULL on failure

Description
Returns the widget (or gadget) associated with the specified GUI or visual object.

2-84

Xvwidgets Program Services Volume III - Chapter 2

G.44. xvw_window() — get the window associated with an object

Synopsis
Window xvw_window(

xvobject object)

Input Arguments
object

object to get the window

Returns
The window associated with the object or gadget on success, KNONE on failure

Description
Returns the window associated with a GUI or visual object.

H. The Button Object

Figure 1: The button GUI object, instantiated as an "Edit" button.

H.1. xvw_create_button() — create a button object

Synopsis
xvobject xvw_create_button(

xvobject parent,
char *name)

Input Arguments
parent

parent of the button object
name

a name for this particular instance of the button object (for use in app-defaults files, etc)

2-85

Xvwidgets Program Services Volume III - Chapter 2

Returns
The GUI button object on success, NULL on failure.

Description
A button object is a rectangular or oval mechanism displaying either a text label or a pixmap. If a call-
back is installed on the button, software control will be passed to the callback routine when the user
clicks the mouse on the button.

H.2. Attributes of the Button Object

Summary of Button Attributes

Attribute Description

XVW_ATEXT The accelerator text used for the button object. This is used when there

is an accelerator/action associated with a button.

XVW_BUTTON_ARM The arm callback is called when the button is about to be selected or

deselected. When the user performs a button press the button is said to

be "armed", when they release the button will generate a button select

callback, which will be followed by a dis-arm callback. xvw_add_call-

back(button, XVW_BUTTON_ARM,

button_cb, client_data);

XVW_BUTTON_SELECT A button is not much fun without a callback installed on it; it has no

functionality otherwise. Use xvw_add_callback() to install a callback

on the button object which will be fired when the user clicks on the but-

ton. When calling xvw_add_callback(), pass this attribute directly, as

in

xvw_add_callback(button, XVW_BUTTON_SELECT,

button_cb, client_data);

XVW_BUTTON_SELECTED Whether the button is selected or not, this will give the appearance that

the button is depressed or not. Which can be used by certain applica-

tions to indicate be used to show optional selected buttons.

XVW_LABEL The label used for the button object. Note that this is only used when

the label is not NULL, otherwise if the label is NULL, then no text will

appear in the button.

XVW_LABEL_JUSTIFY Specifies whether the label on the button is to be left justified, middle

justified, or right justified. Note that this is only used when the

XVW_LABEL is set not set to NULL.

2-86

Xvwidgets Program Services Volume III - Chapter 2

Summary of Button Attributes

Attribute Description

XVW_PIXMAP This is the pixmap (or bitmap) that appears on the button when the

XVW_PIXMAP . is not set to NULL. If NULL (the default) then no

pixmap will appear within the button. Candidates for the value of this

attribute may be created with the use of XCreatePixmap(); see The Xlib

Reference Manual by O’Reilly and Associates. Note that this attribute

is mutually exclusive with XVW_PIXMAP_FILENAME; specify one or the

other, not both.

XVW_PIXMAP_FILENAME This is the name of the file defining the pixmap (or bitmap) to be dis-

played.

XVW_PIXMAP_JUSTIFY Specifies how the pixmap is justified within the pixmap object. The

pixmap can be set to be left justified, middle justified, or right justified.

Note that the same values are used as for XVW_LABEL_JUSTIFY .

Descriptions of Button Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_ATEXT

(atext)

char * NULL any printable text

XVW_BUTTON_ARM

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_BUTTON_SELECT

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_BUTTON_SELECTED

(N/A)

int FALSE TRUE/FALSE

XVW_LABEL

(label)

char * NULL any printable text

XVW_LABEL_JUSTIFY

(labelJustify)

int KLABEL_JUSTIFY_CENTER KLABEL_JUSTIFY_LEFT

KLABEL_JUSTIFY_CENTER

KLABEL_JUSTIFY_RIGHT

XVW_PIXMAP

(pixmap)

Pixmap NULL Valid Pixmap structure

XVW_PIXMAP_FILENAME

(N/A)

char * NULL The full path to a valid xpm or xbm file,

dfining the desired pixmap (or bitmap).

Note that the path may contain $TOOL-

BOX.

2-87

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of Button Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PIXMAP_JUSTIFY

(pixmapJustify)

int KPIXMAP_JUSTIFY_CENTER KPIXMAP_JUSTIFY_LEFT

KPIXMAP_JUSTIFY_CENTER

KPIXMAP_JUSTIFY_RIGHT

H.3. About Callbacks on Buttons

When the user clicks on the button, software control is passed to the installed callback. The callback to which
the button object will pass control must be installed on the button object by the application after the button
object is created, with a call of the composition:

xvw_add_callback(button_object, XVW_BUTTON_SELECT,
callback, client_data);

The callback routine must be defined according to the syntax:

void callback(
xvobject object,
kaddr client_data,
kaddr call_data)

{
/* do something in response to the button click */

}

2-88

Xvwidgets Program Services Volume III - Chapter 2

I. The Label Object

Figure 2: The label GUI object is used to display text in Cantata.

I.1. xvw_create_label() — create a label object

Synopsis
xvobject xvw_create_label(

xvobject parent,
char *name)

Input Arguments
parent

parent of the label object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The label object on success, NULL on failure

Description
A label object is for the display of non-editable text on VisiQuest graphical user interfaces. If desired, a
label object may also display a pixmap, in addition to the text. The label object supports multiline text;
simply include "\n" in the text to indicate the end of a line. Label text and pixmaps may be left, center,
or right justified.

There are three major differences between a label object and a text object. Firstly, a label object is a
gadget; ie, it has no window of its own, but uses the window of its parent. A text object, on the other
hand, is a widget; it has a dedicated window of its own. Secondly, the label object supports the display
of non-editable text only; the text displayed by a text object can be edited by the user unless it is
explicitly handled by the application via the paste callback, irregardless if a cursor is displayed.
Thirdly, the label object is implemented as part of VisiQuest GUI services; the text object, use the label
as a subpart in order to provide editability. For most non-editable text display uses, a label object is
preferable, and has the advantage that it is much faster to refresh than a text object.

The difference between a label object and a string object is that the label object is meant for display of
text on graphical user interfaces, while the string object is an annotation, meant for display of text on
images, area objects, and so on.

2-89

Xvwidgets Program Services Volume III - Chapter 2

I.2. Attributes of the Label Object

Summary of Label Attributes

Attribute Description

XVW_FORCE_REDISPLAY This attribute of the manager gadget is inherited by the label object; it

is emphasized here because it can be used by the label object to achieve

smoother, faster update of the label. It is especially useful when the

label is updated very rapidly, as for example in an event handler

installed on button motion.

XVW_LABEL The label used for the label object.

XVW_LABEL_EMPHASIZE This attribute causes the label to be drawn twice, giving it a 3D, empha-

sized effect.

XVW_LABEL_EMPHASIZECOLOR When XVW_LABEL_EMPHASIZE is set to TRUE, this is the color in

which the label is emphasized.

XVW_LABEL_EMPHASIZEPIXEL When XVW_LABEL_EMPHASIZE is set to TRUE, this is the pixel value

associated with the color in which the label is emphasized.

XVW_LABEL_JUSTIFY Specifies whether the label on the label object is to be left justified,

middle justified, or right justified.

Descriptions of Label Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_FORCE_REDISPLAY

(forceRedisplay)

int FALSE TRUE/FALSE

XVW_LABEL

(label)

char * NULL any printable text

XVW_LABEL_EMPHASIZE

(labelEmphasize)

int FALSE TRUE/FALSE

XVW_LABEL_EMPHASIZECOLOR

(labelEmphasizeColor)

char * the background

color

any valid color name: see

/usr/lib/X11/rgb.txt or Section 7.1.1 of

The XLib Programming Manual by

Adrian Nye

XVW_LABEL_EMPHASIZEPIXEL

(N/A)

unsigned

long

pixel associated

with the back-

ground color

any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

XVW_LABEL_JUSTIFY

(labelJustify)

int KLABEL_JUSTIFY_CENTER KLABEL_JUSTIFY_LEFT

KLABEL_JUSTIFY_CENTER

KLABEL_JUSTIFY_RIGHT

2-90

Xvwidgets Program Services Volume III - Chapter 2

I.3. Button & Label Example

#include <design.h>

/*
* This example program puts up 5 pairs of labels & buttons.
* It adds very simple callbacks to the buttons.
*/

#define BUTTON_NUM 5

static void button_cb PROTO((xvobject, kaddr, kaddr));

void main(
int argc,
char *argv[])

{
int i;
int *button_id;
char temp[KLENGTH];
xvobject manager;
xvobject button;
xvobject label;
xvobject horiz_offset;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidget library */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror("example", "main", "Cannot open display");
kexit(KEXIT_FAILURE);

}

/* create a manager backplane */
manager = xvw_create_manager(NULL, "back");

/*
* create 5 pairs of buttons & labels, each button appearing
* under its label. Using horiz_offset allows us to create the
* pairs in a line.
*/
horiz_offset = NULL;
for (i = 0; i < BUTTON_NUM; i++)
{

ksprintf(temp, "label%d", i+1);
label = xvw_create_label(manager, "label");
xvw_set_attributes(label,

XVW_LABEL, temp, /* numbered label */
XVW_RIGHT_OF, horiz_offset, /* line of buttons */
XVW_BELOW, NULL, /* top row */
XVW_CHAR_WIDTH, 10.0, /* 10 chars wide */
XVW_CHAR_HEIGHT, 2.0, /* 2 char high */
XVW_BORDER_WIDTH, 0, /* no border */
NULL);

2-91

Xvwidgets Program Services Volume III - Chapter 2

ksprintf(temp, "button%d", i+1);
button = xvw_create_button(manager, "button");
xvw_set_attributes(button,

XVW_LABEL, temp, /* numbered label */
XVW_RIGHT_OF, horiz_offset, /* line of labels */
XVW_BELOW, label, /* below the label */
XVW_CHAR_WIDTH, 10.0, /* 10 chars wide */
XVW_CHAR_HEIGHT, 2.0, /* 2 char high */
XVW_BORDER_WIDTH, 1, /* thin border */
NULL);

button_id = (int *) kmalloc(sizeof(int));
*button_id = 100+i;
xvw_add_callback(button, XVW_BUTTON_SELECT, button_cb, button_id);

horiz_offset = label;
}

/* display & run program */
xvf_run_form();

}

static void button_cb (
xvobject object,
kaddr client_data, /* not used */
kaddr call_data) /* not used */

{
char *label;

/*
* sent in a pointer to an integer as client_data;
* have to retrieve it by using an appropriate cast
*/
int *number = (int *) client_data;

/*
* see what the label of the button is
*/
xvw_get_attribute(object, XVW_LABEL, &label);

/*
* print out button label, with ID number
*/
kfprintf(kstderr, "Button click on %s, ID number %d\n",

label, *number);
}

2-92

Xvwidgets Program Services Volume III - Chapter 2

J. The List Object

Figure 3: The list object is used by craftsman to list software objects in a toolbox.

J.1. xvw_create_list() — create a list object

Synopsis
xvobject xvw_create_list(

xvobject parent,
char *name)

Input Arguments
parent

parent of the list object
name

a name for this particular instance of the list object (for use in app-defaults files, etc)

Returns
The list object on success, NULL on failure

2-93

Xvwidgets Program Services Volume III - Chapter 2

Description
The list GUI object presents the user with a set of strings inside a scrolled viewport. A callback can be
installed on the list object which will be fired when the user selects an item from the list.

A list GUI object is really a compound object; that is, it is made up of two objects: the viewport and
the "actual list", where the viewport contains the list and provides scrolling capabilities, and the "actual
list" is inside the viewport and contains the list contents.

When you create a list, the GUI object returned is the viewport object; this object should be referenced
when setting geometry, relative offset, and so on (in other words, when setting or getting any attribute
not having to do directly with the contents of the list, where those particular attributes are called out
below).

The "actual list" part of the object is used when changing the contents of the list, setting the size of the
list, and highlighting or unhighlighting elements of the list. The "actual list" part of the compound list
object can be obtained with a call to xvw_retrieve_list().

When the Athena widget set is used, the list object is instantiated as a xfwfScrolledListWidget. When
the Olit widget set is used, the list object is instantiated as a scrollingListWidget. When the Motif wid-
get set is used, the list object is instantiated as a ScrolledList.

J.2. Attributes of the List Object

Summary of List Attributes

Attribute Description

XVW_LIST_ADD This action attribute adds the specified string to the end of the list and

automatically increments XVW_LIST_SIZE . The displayed list is auto-

matically updated to display the new string.

XVW_LIST_DELETE This action attribute deletes the specified string from the list and auto-

matically decrements XVW_LIST_SIZE . The displayed list is automati-

cally updated so that the old string is no longer displayed.

XVW_LIST_DELETEALL This action attribute deletes all strings from the list and automatically

sets XVW_LIST_SIZE to 0 and XVW_LIST_INDEX to -1. The displayed

list is emptied.

XVW_LIST_HIGHLT_ELEM This action attribute may be used to highlight an element in the list.

Provide the index of the element to be highlighted. If the element is

already highlighted when the action attribute is used, nothing will hap-

pen. Remember that indexing begins at 0.

XVW_LIST_INDEX This attribute specifies the selected item in the list by index. Getting

this attribute returns the index of the selected item in the list, or -1 if no

item is selected. Setting this attribute causes the item with the specified

index to be selected, or if set to -1 causes the list to have no item

selected .

2-94

Xvwidgets Program Services Volume III - Chapter 2

Summary of List Attributes

Attribute Description

XVW_LIST_ITEM_ACTION xvw_add_callback() may be used to install a callback on the list object

which will be fired when the user clicks twice, rapidly on an item in the

list.

When calling xvw_add_callback(), pass this attribute directly, as in

xvw_add_callback(listobj,

XVW_LIST_ITEM_ACTION,

list_cb, client_data);

XVW_LIST_ITEM_SELECT xvw_add_callback() may be used to install a callback on the list object

which will be fired when the user clicks once on an item in the list.

When calling xvw_add_callback(), pass this attribute directly, as in

xvw_add_callback(listobj,

XVW_LIST_ITEM_SELECT,

list_cb, client_data);

XVW_LIST_SIZE This attribute specifies size of the array of strings that are displayed by

the list object. Note that when setting this attribute, you should set the

XVW_LIST_STRINGS attribute at the same time to indicate the strings in

the array!

XVW_LIST_STRING This attribute specifies the selected item in the list by string. Getting

this attribute returns the string corresponding to the selected item of the

list, or NULL if no item is selected. Setting this attribute causes the

selected item in the list to have its string updated to this new value.

Setting this attribute to NULL causes the list to have no item selected.

XVW_LIST_STRINGS This attribute is the array of strings representing the items that are dis-

played by the list object. Note that when setting this attribute, you

MUST set the XVW_LIST_SIZE attribute at the same time to indicate

the number of strings in the array! Similarly, if getting this attribute,

you should get the XVW_LIST_SIZE attribute as well to tell you the

number of strings in the returned array.

XVW_LIST_UNHIGHLT_ELEM This action attribute may be used to un-highlight an element in the list.

Provide the index of the element to be un-highlighted. If the element is

not highlighted when the action attribute is used, nothing will happen.

Remember that indexing begins at 0.

Descriptions of List Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_LIST_ADD

(N/A)

char * N/A the string to be added to the list

2-95

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of List Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_LIST_DELETE

(N/A)

char * N/A the string to be deleted from the list

XVW_LIST_DELETEALL

(N/A)

int N/A TRUE

XVW_LIST_HIGHLT_ELEM

(N/A)

int N/A 0 <= value <= XVW_LIST_SIZE -1

XVW_LIST_INDEX

(N/A)

int -1 -1 for no string selected; otherwise, the

index of the string that is selected (0 to

XVW_LIST_SIZE - 1)

XVW_LIST_ITEM_ACTION

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_LIST_ITEM_SELECT

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_LIST_SIZE

(N/A)

int 0 size of the string array being displayed

XVW_LIST_STRING

(N/A)

kstring NULL NULL for no item selected; otherwise, the

string of the item that is selected

XVW_LIST_STRINGS

(N/A)

kstring * NULL Array of strings, of size specified by

XVW_LIST_SIZE.

XVW_LIST_UNHIGHLT_ELEM

(N/A)

int N/A 0 <= value <= XVW_LIST_SIZE -1

J.3. About Callbacks on Lists

When the user selects a string from the list object, software control is passed to the installed callback. The
callback to which the list object will pass control must be installed on the compound list object (as opposed to
the "actual list" object) by the application after the list object is created, with a call of the composition:

xvw_add_callback(list_object, XVW_LIST_ITEM_SELECT,
callback, client_data);

The callback routine must be defined according to the syntax:

void callback(

2-96

Xvwidgets Program Services Volume III - Chapter 2

xvobject list_object,
kaddr client_data,
kaddr call_data)

{
xvw_list_struct *list_return;

/* see "USING CALLBACKS" for use of client_data */
/* cast the pointer to the call_data */

list_return = (xvw_list_struct *) call_data;
/* now, list_return->string holds the selected string */
/* now, list_return->list_index has the index of the selected string */
:
:

}

As implied in the above specification, user’s click on one of the items in the list causes the xvwidgets library to
pass software control to the callback routine defined. The callback routine will be called with the call_data
containing the current string value and its index stored in following structure :

/*
* The list structure returned as call_data from the list object
*/

typedef struct _xvw_list_struct {
char *string; /* the string selected by the user */
int list_index; /* index of the string */

} xvw_list_struct;

J.4. List Example

#include <design.h>

/*
* This program puts up two list objects; it emphasizes the compound nature
* of the list object which consists of a scrolled backplane and the actual
* list object.
*
* The xvw_change_list() routine is used to set the lists’ contents;
* passing different values for the last argument to xvw_change_list
* determine whether a scrollbar will appear.
*
* A very simple callback is added to the list items, which prints out the
* index and string associated with a list item when the user selects it.
*
* This example also serves to illustrate the use of call_data.
*
*/

void list_item_cb PROTO((xvobject, kaddr, kaddr));
void quit_cb PROTO((xvobject, kaddr, kaddr));

void main(
int argc,
char *argv[])

{

2-97

Xvwidgets Program Services Volume III - Chapter 2

xvobject manager;
xvobject button;

int num1, num2;
xvobject list1, list2, actual_list;

static char *geographical_strings[] = {
"mountains", "rivers", "oceans", "plains",
"forests", "deserts", "marshes", "reefs",
"glaciers", "jungles"

};

static char *animal_strings[] = {
"bears", "cats", "fish", "cockroaches", "birds",
"spiders", "dogs", "lizards", "frogs",
"tigers", "dolphins", "rabbits", "mooses",
"monkeys", "antelopes"

};

/*
* "knumber" is a convenient routine that counts the number of items

* in a static array of strings
*/
num1 = knumber(geographical_strings);
num2 = knumber(animal_strings);

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidget library */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror("example", "main", "Cannot open display");
kexit(KEXIT_FAILURE);

}

/* create a manager backplane */
manager = xvw_create_manager(NULL, "back");
xvw_set_attributes(manager,

XVW_RESIZABLE, TRUE,
NULL);

/*
* create the first list. the list object is a compound object,

* consisting of:
* 1 - a scrolled backplane
* 2 - the actual list

*/
list1 = xvw_create_list(manager, "list1");
xvw_set_attributes(list1,

XVW_RESIZABLE, TRUE, /* resizable */
XVW_CHAR_WIDTH, 20.0, /* width of 20 chars */
XVW_CHAR_HEIGHT, 5.0, /* height of 5 chars */
XVW_BELOW, NULL, /* at the top */
XVW_RIGHT_OF, NULL, /* at the left edge */
NULL);

/*
* retrieve the list component of the list object, so that

* we can set the contents of it, set attributes on it,

2-98

Xvwidgets Program Services Volume III - Chapter 2

* and install the callback.
*/
actual_list = xvw_retrieve_list(list1);

/*
* Use xvw_change_list() to set the contents of the list.

* Since the last parameter on xvw_change_list() is TRUE,
* XVW_CHAR_WIDTH and XVW_CHAR_HEIGHT will be => over-ridden
* by the actual width & height of the list. So, xvw_change_list()
* is being allowed to resize the list widget to fit the given list;

* thus, there will NOT be a scroll bar on the first list.
*/
xvw_change_list(actual_list, geographical_strings, num1, TRUE);

xvw_set_attribute(actual_list, XVW_LIST_HIGHLT_ELEM, 3);
xvw_set_attribute(actual_list, XVW_LIST_UNHIGHLT_ELEM, 3);

/*
* add the list_item_cb() callback on the list.
*/
xvw_add_callback(actual_list, XVW_LIST_ITEM_SELECT,

list_item_cb, "list1");

/*
* Since the last parameter on xvw_change_list() is FALSE, the second
* list is constrained to the width and height indicated by the
* values of the XVW_CHAR_WIDTH and XVW_CHAR_HEIGHT attributes.
* Since the list is too big to fit in the space specified, a
* scrollbar will appear.
*/
list2 = xvw_create_list(manager, "list2");
xvw_set_attributes(list2,

XVW_RESIZABLE, TRUE, /* resizable */
XVW_RIGHT_OF, list1, /* R of the 1st list */
XVW_CHAR_WIDTH, 20.0, /* width of 20 chars */
XVW_CHAR_HEIGHT, 5.0, /* height of 5 chars */
XVW_BELOW, NULL, /* at the top */
NULL);

actual_list = xvw_retrieve_list(list2);

xvw_change_list(actual_list, animal_strings, num2, FALSE);
xvw_add_callback(actual_list, XVW_LIST_ITEM_SELECT,

list_item_cb, "list2");

/* Add a button to quit the program */
button = xvw_create_button(manager, "button");
xvw_set_attributes(button,

XVW_LABEL, "Quit",
XVW_BELOW, list2,
XVW_LEFT_OF, NULL,
NULL);

xvw_add_callback(button, XVW_BUTTON_SELECT, quit_cb, NULL);

/* display and run */
xvf_run_form();

}

void list_item_cb (
xvobject object,
kaddr client_data,

2-99

Xvwidgets Program Services Volume III - Chapter 2

kaddr call_data)
{

xvw_list_struct *list_return;
char *title = (char *) client_data;

/*
* a list object is one of the few objects that uses a call_data

* structure. it needs to => return information to the caller,
* so that information is returned via the call_data. The data type
* of the call_data is determined by the object itself; a list
* object uses a call_data of type "xvw_list_struct". The
* xvw_list_struct data structure has two fields: a char *string,
* and an int list_index.

*/
list_return = (xvw_list_struct *) call_data;

/*
* use contents of call_data structure to display index & string
*/
kfprintf(kstderr, "Chosen was item %d of %s, %s\n",

list_return->list_index, title, list_return->string);

}

void quit_cb (
xvobject object,
kaddr client_data,
kaddr call_data)

{
exit(0);

}

2-100

Xvwidgets Program Services Volume III - Chapter 2

K. The Menu & MenuButton Objects

Figure 4: The menubutton GUI object is used to pull down a menu of buttons and labels. Here, the Motif
version of a menubutton/menu pair lists names of subforms and action buttons.

K.1. xvw_create_menubutton() — create a menubutton object

Synopsis
xvobject xvw_create_menubutton(

xvobject parent,
char *name)

Input Arguments
parent

parent of the menubutton object
name

a name for this particular instance of the menubutton object (for use in app-defaults files, etc)

Returns
The GUI menubutton object on success, NULL on failure.

Description
A menubutton object is a rectangular or oval mechanism displaying either a text label or a pixmap. If a
callback is installed on the menubutton, software control will be passed to the callback routine when
the user clicks the mouse on the menubutton.

2-101

Xvwidgets Program Services Volume III - Chapter 2

K.2. xvw_create_menu() — create a menu object

Synopsis
xvobject xvw_create_menu(

xvobject parent,
char *name)

Input Arguments
parent

parent of the menu object
name

a name for this particular instance of the menu object (for use in app-defaults files, etc)

Returns
The menu GUI object on success, NULL on failure.

Description
The menu GUI object is the menu which is associated with a button n which the user can click to
pull down a menu of items; holding the mouse button down, the user may select an item from the
menu. Items in the menu may be button objects or label objects. Button object items in the menu will
be highlighted when the user moves the pointer over them. If the mouse button is released with the
pointer over a button in the menu when that button has a callback installed,* the button
callback will be fired normally.

It is important to understand that the menubutton GUI object is a compound object. That is, there are
actually two objects created: the menubutton and the menu itself, where the menubutton is the button
that appears on the GUI, and the menu is what pops up when the user clicks on the menubutton.

When you create a menubutton object, the GUI object returned is the button; this object should be ref-
erenced when setting geometry, relative offset, and so on. Attributes such as label, width, and height
may also be set on the menubutton.

However, in order to add buttons and labels to the pulldown menu, you will to call xvw_create_but-
ton() and xvw_create_label() with the menu (not the menubutton) as the parent. The actual menu com-
ponent of the compound menubutton object can be obtained with:
xvw_get_attribute(menubutton, XVW_MENUBUTTON_MENU, &menu);

Summary of Menu Attributes

Attribute Description

2-102

Xvwidgets Program Services Volume III - Chapter 2

Summary of Menu Attributes

Attribute Description

XVW_MENU_TEAR_OFF If desired, this allows the user to create a tear-away, where the menu

will appear to allow the user to tear off/away the menu into it’s toplevel

window.

Descriptions of Menu Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_MENU_TEAR_OFF

(menuTearOff)

int FALSE TRUE/FALSE

Summary of MenuButton Attributes

Attribute Description

XVW_MENUBUTTON_MENU This is a read-only attribute that will return the pointer to the xvobject

for the menu associated with the menubutton. The menu is actually

created by the menubutton object, and this resource.

Descriptions of MenuButton Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_MENUBUTTON_MENU

(N/A)

xvobject NULL valid xvobject

K.3. MenuButton Example

#include <design.h>

/*
* This program illustrates the use of the menubutton object; it
* emphasizes the compound nature of the menubutton object, which consists
* of the menu button itself, plus the submenu which contains the buttons
* and/or labels which are displayed when the user clicks on the menubutton.
*/

#define PAIR_NUM 5

void button_cb PROTO((xvobject, kaddr, kaddr));
void quit_cb PROTO((xvobject, kaddr, kaddr));

2-103

Xvwidgets Program Services Volume III - Chapter 2

void main(
int argc,
char *argv[])

{
int i;
char temp[KLENGTH];
xvobject manager;
xvobject menubutton;
xvobject submenu;
xvobject button;
xvobject label;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidget library */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror("example", "main", "Cannot open display");
kexit(KEXIT_FAILURE);

}

/* create a manager backplane */
manager = xvw_create_manager(NULL, "back");
xvw_set_attributes(manager,

XVW_WIDTH, 100, /* 100 pixels wide */
XVW_HEIGHT, 100, /* 100 pixels high */
NULL);

/*
* create the menubutton, which is actually a compound object

* consisting of two xvobjects:
* 1) the menubutton, which is always displayed, and on which the
* user may click to display the submenu
* 2) the submenu, which will be the parent to the buttons
* & labels on the menu.

*/
menubutton = xvw_create_menubutton(manager, "menubutton");

/*
* set the label of the menubutton, and center it in the middle

* of the manager backplane.
*/
xvw_set_attributes(menubutton,

XVW_LABEL, "Menu Button", /* Set label. */
XVW_ABOVE, NULL, /* By setting all the */
XVW_BELOW, NULL, /* relative positioning */
XVW_LEFT_OF, NULL, /* attributes to NULL, put the */
XVW_RIGHT_OF, NULL, /* button in middle of manager */
NULL);

/*
* once the menubutton is created, you can obtain the submenu

* with the function named appropriately.
*/
submenu = xvw_retrieve_menu(menubutton);

/*
* want to have 5 pairs of buttons & labels appear on the submenu.

2-104

Xvwidgets Program Services Volume III - Chapter 2

* create the buttons and labels, using submenu as the parent.
*/
for (i = 0; i < PAIR_NUM; i++)
{

/*
* Alternate buttons with labels on the menu. Both the labels and

* buttons are labelled incrementally; on a menu, each item will
* automatically be placed beneath the last, there is no need to
* use positioning attributes (in fact, they are ignored).
* Install the "button_cb" callback on the buttons.
*/

sprintf(temp, "button%d", i+1);
button = xvw_create_button(submenu, "button");
xvw_set_attribute(button, XVW_LABEL, temp);
xvw_add_callback(button, XVW_BUTTON_SELECT,

button_cb, NULL);

sprintf(temp, "label%d", i+1);
label = xvw_create_label(submenu, "label");
xvw_set_attribute(label, XVW_LABEL, temp);

}

/*
* last, put in a button with a callback that will allow

* the user to quit the program.
*/
button = xvw_create_button(submenu, "button");

xvw_set_attribute(button, XVW_LABEL, "Quit");
xvw_add_callback(button, XVW_BUTTON_SELECT,

quit_cb, NULL);

/* display and run the program */
xvf_run_form();

}

void button_cb (
xvobject object,
kaddr client_data,
kaddr call_data)

{
char *label;

xvw_get_attribute(object, XVW_LABEL, &label);
fprintf(stderr, "Selection of ’%s’\n", label);

}

void quit_cb (
xvobject object,
kaddr client_data,
kaddr call_data)

{
exit(0);

}

2-105

Xvwidgets Program Services Volume III - Chapter 2

K.4. About Callbacks on Menubuttons

It is not necessary to add a callback to the menubutton; by its nature, it will display the pulldown menu when it
receives a button press event. Callbacks can (and should) be added to each button that is created as part of the
menu, but these callbacks are identical to callbacks on any other button, see the section on "Button GUI
Object."

2-106

Xvwidgets Program Services Volume III - Chapter 2

L. The Pixmap Object

Figure 5: The label GUI object can also be used to display a pixmap.

L.1. xvw_create_pixmap() — create a pixmap object

Synopsis
xvobject xvw_create_pixmap(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The pixmap object on success, NULL on failure

Description
A pixmap object simply supports display of a bitmap or pixmap, as defined by an xbm or xpm file.

2-107

Xvwidgets Program Services Volume III - Chapter 2

L.2. Attributes of the Pixmap Object

Summary of Pixmap Attributes

Attribute Description

XVW_PIXMAP This is the pixmap (or bitmap) that appears in the pixmap object. Can-

didates for the value of this attribute may be created with the use of

XCreatePixmap(); see The Xlib Reference Manual by O’Reilly and As-

sociates. Note that this attribute is mutually exclusive with

XVW_PIXMAP_FILENAME; specify one or the other, not both.

XVW_PIXMAP_FILENAME This is the name of the file defining the pixmap.

XVW_PIXMAP_FORCED_HEIGHT This will force a pixmap to take on the specified height. The pixmap

will be subsampled or supersampled as needed.

XVW_PIXMAP_FORCED_WIDTH This will force a pixmap to take on the specified width. The pixmap

will be subsampled or supersampled as needed.

XVW_PIXMAP_JUSTIFY Specifies how the pixmap is justified within the pixmap object. The

pixmap can be set to be left justified, middle justified, or right justified.

Note that the same values are used as for XVW_LABEL_JUSTIFY .

XVW_PIXMAP_MASK Pixmaps are defined by a rectangular grid of values. For implementing

non-rectangular pixmaps, a bitmap is used to indicate which portions of

the rectangular pixmap should appear, and which portions should not

be displayed. This bitmap is referred to as a mask. The bitmap must be

defined in an xbm file, and the bitmap should be of the same size as the

pixmap being displayed. Anywhere a 1 appears in the bitmap, the

value of the pixmap at that point is displayed; anywhere a 0 appears in

the bitmap, the value of the pixmap at that point will not be displayed.

Thus, a circular pixmap can be implemented with a pixmap/bitmap

mask pair: the pixmap will define the picture in the circle, while the

bitmap mask has all 1’s within the boundaries of the circle, and all 0’s

outside the circle bounds. Candidates for the bitmap may be created

with XCreateBitmapFromData(); see The Xlib Reference Manual by

O’Reilly and Associates. Note that this attribute is mutually exclusive

with XVW_PIXMAP_MASKNAME; specify one or the other, not both.

XVW_PIXMAP_MASKNAME This is the file defining the bitmap mask used with non-rectangular

pixmaps; see XVW_PIXMAP_MASK for more details.

Descriptions of Pixmap Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PIXMAP

(pixmap)

Pixmap NULL Valid Pixmap structure

2-108

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of Pixmap Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PIXMAP_FILENAME

(pixmapFilename)

char * NULL The full path to a valid xpm or xbm file,

defining the desired pixmap. Note that the

path may contain $TOOLBOX.

XVW_PIXMAP_FORCED_HEIGHT

(pixmapForcedWidth)

int -1 Any positive integer. A value of -1

denotes that that this attribute should be

ignored.

XVW_PIXMAP_FORCED_WIDTH

(pixmapForcedWidth)

int -1 Any positive integer. A value of -1

denotes that that this attribute should be

ignored.

XVW_PIXMAP_JUSTIFY

(pixmapJustify)

int KPIXMAP_JUSTIFY_CENTER KPIXMAP_JUSTIFY_LEFT

KPIXMAP_JUSTIFY_CENTER

KPIXMAP_JUSTIFY_RIGHT

XVW_PIXMAP_MASK

(N/A)

Pixmap NULL Valid Pixmap structure

XVW_PIXMAP_MASKNAME

(pixmapMaskname)

char * NULL The full path to the xbm file defining the

mask; Note that the path may contain

$TOOLBOX.

L.3. Complete Resource Set of the Pixmap Object

The complete resource set for the pixmap object includes:

1. The pixmap object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Section C.2, "Attributes of the
VisiQuest 2001 Manager Object".

3. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

L.4. Example using the Pixmap Object

An example program using the pixmap object can be found in $DESIGN/examples/xvwid-
gets/pixmap/example.c.

2-109

Xvwidgets Program Services Volume III - Chapter 2

M. The Rowcol Object

Figure 6: The RowCol GUI object provides a layout area in which visual and gui objects are layed out in
a Row/Column fashion. Here, eleven menubuton objects are layed out two abreast, except for the
eleventh one.

M.1. xvw_create_rowcol() — create a row-col object

Synopsis
xvobject xvw_create_rowcol(

xvobject parent,
char *name)

Input Arguments
parent

the parent of the rowcol object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The rowcol object on success, NULL on failure

Description
A rowcol object is designed specifically for doing convenient layout of other objects in a table-like for-
mat, in rows and columns. The rowcol object may be used as a parent for any GUI or visual object,
but works particularly well when laying out objects of similar size and nature, such as labels, buttons,
pixmaps, annoations, and so on.

2-110

Xvwidgets Program Services Volume III - Chapter 2

M.2. Attributes of the RowCol Object

Summary of RowCol Attributes

Attribute Description

XVW_ROWCOL_ACTIVE This constraint attribute can be placed on any RowCol child. It is used

to indicate which children should be actively used in the row/column

layout method.

XVW_ROWCOL_NUMBER_ACROSS This attribute specifies how many area objects will be placed on the

same row before a new row is started.

XVW_ROWCOL_PACKING This attribute specifies how the items within the rowcol objects is to be

packed. The default is to pack the items within the RowCol so that they

are aligned both vertically and horizontally, AccuSoftOW-

COL_PACK_ROWCOL.

AccuSoftOWCOL_PACK_ROW: packs only along the rows (vertically).

AccuSoftOWCOL_PACK_COLUMN: packs only along the columns (hori-

zontally).

AccuSoftOWCOL_PACK_ROWCOL: packs along both the rows and

columns.

AccuSoftOWCOL_PACK_TIGHT: does no packing and will layout

XVW_ROWCOL_SPACING This attribute specifies the minimum spacing between each objects, in

pixels. The default is -1, which means it uses the Manager Object sub-

class attribute XVW_CANVAS_GRIDSIZE . If the XVW_CANVAS_GRID-

SIZE is 0, then the XVW_XSNAP and the XVW_YSNAP is used. If a 0 or

positive value is provided, then that is used as the spacing.

Descriptions of RowCol Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_ROWCOL_ACTIVE

(rowcolActive)

int TRUE TRUE/FALSE

XVW_ROWCOL_NUMBER_ACROSS

(rowcolNumberAcross)

int -1 integer value

XVW_ROWCOL_PACKING

(rowcolPacking)

int AccuSoftOW-

COL_PACK_ROWCOL

AccuSoftOWCOL_PACK_ROW

AccuSoftOWCOL_PACK_COLUMN

AccuSoftOWCOL_PACK_ROWCOL

AccuSoftOWCOL_PACK_TIGHT

XVW_ROWCOL_SPACING

(rowcolSpacing)

int -1 integer value

2-111

Xvwidgets Program Services Volume III - Chapter 2

M.3. Complete Resource Set of the RowCol Object

The complete resource set for the rowcol object includes:

1. The rowcol object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Section C.2, "Attributes of the
VisiQuest 2001 Manager Object".

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

M.4. Example using the RowCol Object

An example program using the rowcol object can be found in $DESIGN/examples/xvwidgets/row-
col/example.c.

2-112

Xvwidgets Program Services Volume III - Chapter 2

N. The Scrollbar Object

Figure 7: The scrollbar is frequently used in VisiQuest GUI’s.

N.1. xvw_create_scrollbar() — create a scrollbar object

Synopsis
xvobject xvw_create_scrollbar(

xvobject parent,
char *name)

Input Arguments
parent

parent of the scrollbar object
name

a name for this particular instance of the scrollbar object (for use in app-defaults files, etc)

Returns
The Scrollbar object on success, NULL on failure.

Description
The scrollbar GUI object allows users to reposition data that is too large to fit in a viewing window.
Typically, the scrollbar is used by other objects that serve as a backplane for a large number of subordi-
nate objects that will not fit within the viewing area. For example, the TextDisplay object has a built-in
scrollbar which allows the user to scroll through the text being displayed, and the List object will dis-
play a scrollbar if the number of items in the list exceeds the space provided by the height of the List
object. The Viewport object also has built-in scrollbars to allow the user to shift the area of view, as
does the Canvas object.

The Scrollbar consists of a long, thin area called the scrollbar trough, within which is a smaller, mov-
able button called the slider. Scrollbars may be horizontal or vertical. Horizontal scrollbars have the
minimum value at the top and the maximum value at the bottom; vertical scrollbars have the minimum
value at the left and the maximum value at the right.

With a horizontal scrollbar, clicking in the scrollbar trough to the right of the slider will cause the
scrollbar to increment in value; clicking in the scrollbar trough to the left of the slider will cause the

2-113

Xvwidgets Program Services Volume III - Chapter 2

scrollbar to decrement in value. Similarly with a vertical scrollbar, clicking above the slider will decre-
ment the value while clicking below the slider will increment the value. The slider itself can be
dragged back and forth (with a horizontal scrollbar) or up and down (with a vertical scrollbar) to
change the value.

A callback can be installed on the scrollbar for incremental movement; this callbeack will be fired
when the user clicks in the scrollbar trough (after the scrollbar value is incremented or decremented).
The same callback or another callback may be installed on the scrollbar for continuous movement; this
callback will be fired when the user moves the slider of the scrollbar (after the scrollbar value is
updated).

N.2. Attributes of the Scrollbar Object

Summary of Scrollbar Attributes

Attribute Description

XVW_ORIENTATION Indicates whether the scrollbar is to be horizontal or vertical. When a

scrollbar is horizontal, the minimum value is on the left and the maxi-

mum value is on the right. When a scrollbar is vertical, the minimum

value is at the top and the maximum value is at the bottom.

XVW_SCROLL_CONT_MOTION If desired, xvw_add_callback() may be used to install a callback on the

scrollbar object which will be fired when the user employs the middle

mouse button to move the scrollbar slider continuously. When calling

xvw_add_callback(), pass this attribute directly, as in

xvw_add_callback(scrollbar_obj,

XVW_SCROLL_CONT_MOTION,

scrollbar_cb, client_data);

XVW_SCROLL_INCR The value by which the scrollbar slider will be incremented or decre-

mented when the user clicks in the scrollbar trough.

XVW_SCROLL_INCR_MOTION If desired, xvw_add_callback() may be used to install a callback on the

scrollbar object which will be fired when the user employs the right or

left mouse buttons in the scrollbar trough to move the scrollbar slider

incrementally. When calling xvw_add_callback(), pass this attribute

directly, as in

xvw_add_callback(scrollbar_obj,

XVW_SCROLL_INCR_MOTION,

scrollbar_cb, client_data);

XVW_SCROLL_MAX The maximum world coordinate value that will be represented by the

scrollbar.

XVW_SCROLL_MIN The minimum world coordinate value that will be represented by the

scrollbar.

2-114

Xvwidgets Program Services Volume III - Chapter 2

Summary of Scrollbar Attributes

Attribute Description

XVW_SCROLL_VALUE The current (and default) world coordinate represented by the current

position of the scrollbar slider.

Descriptions of Scrollbar Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_ORIENTATION

(orientation)

int KSCROLLBAR_ORI-

ENT_HORIZ

KSCROLLBAR_ORIENT_HORIZ

KSCROLLBAR_ORIENT_VERT

XVW_SCROLL_CONT_MOTION

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_SCROLL_INCR

(N/A)

double calculated:

(scroll max -

scroll min)/10

values < (scroll max - scroll min)/2

XVW_SCROLL_INCR_MOTION

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_SCROLL_MAX

(N/A)

double 0 value > scroll min

XVW_SCROLL_MIN

(N/A)

double 0 value < scroll max

XVW_SCROLL_VALUE

(N/A)

double 0 scroll min < value < scroll max

N.3. About Callbacks on Scrollbars

When the user moves the thumb of the scrollbar, software control is passed to the installed callback. The call-
back may be installed for incremental motion of the scrollbar (XVW_SCROLL_INCR_MOTION), or continuous
motion of the scrollbar (XVW_SCROLL_CONT_MOTION), or both. The callback to which the scrollbar object will
pass control must be installed by the application after the scroll object is created, with a call of the composi-
tion:

xvw_add_callback(scroll_object, XVW_SCROLL_INCR_MOTION,
callback, client_data);

-and/or -

2-115

Xvwidgets Program Services Volume III - Chapter 2

xvw_add_callback(scroll_object, XVW_SCROLL_CONT_MOTION,
callback, client_data);

The callback routine must be defined according to the syntax:

void callback(
xvobject object,
kaddr client_data,
kaddr call_data)

{
int *scrollbar_movement;

/* see "USING CALLBACKS" for use of client_data */
/* cast the pointer to the call_data */

scrollbar_movement = (int) call_data;

/* now, scrollbar_movement indicates movement of scrollbar thumb */
:
:

}

As implied in the above specification, the user’s movement of the scrollbar thumb causes the xvwidgets library
to pass software control to the callback routine defined. The callback routine will be called with the call_data
containing an integer value representing the movement of the scrollbar thumb from its previous position. A
positive movement value indicates that the scrollbar was moved to the left; a neg ative value indicates that the
scrollbar was moved to the right.

N.4. Scrollbar Example

#include <design.h>

/*
* This example program puts 5 vertical scrollbars & 5 horizontal
* scrollbars. It adds callbacks to the scrollbars to print the value
* currently indicated by the scrollbar. This example also serves to
* illustrate the use of call_data.
*/

#define SCROLLBAR_NUM 5

void scrollbar_cb PROTO((xvobject, kaddr, kaddr));

void main(
int argc,
char *argv[])

{
int i;
char name[KLENGTH];
xvobject manager;
xvobject sb;
xvobject horiz_offset;
xvobject vert_offset;

2-116

Xvwidgets Program Services Volume III - Chapter 2

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets library */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror("example", "main", "Cannot open display");
kexit(KEXIT_FAILURE);

}

/* every GUI has a manager backplane */
manager = xvw_create_manager(NULL, "back");

horiz_offset = NULL;

/*
* five vertical scrollbars in a row
*/
for (i = 0; i < SCROLLBAR_NUM; i++)
{

sprintf(name, "vert_sb_%d", i+1);
sb = xvw_create_scrollbar(manager, name);
xvw_set_attributes(sb,

XVW_RIGHT_OF, horiz_offset, /* to R of neighbor */
XVW_ORIENTATION, KSCROLLBAR_ORIENT_VERT, /* vertical */
XVW_CHAR_WIDTH, 2.0, /* 2 chars wide */
XVW_CHAR_HEIGHT, 10.0, /* 10 chars high */
XVW_SCROLL_MIN, 0.0, /* min value of 0 */
XVW_SCROLL_MAX, 100.0, /* max value of 100 */
XVW_SCROLL_VALUE, ((double)i)*10.0, /* value = last val * 10 */
NULL);

horiz_offset = sb;
xvw_add_callback(sb, XVW_SCROLL_CONT_MOTION,

scrollbar_cb, NULL);
xvw_add_callback(sb, XVW_SCROLL_INCR_MOTION,

scrollbar_cb, NULL);
}

/*
* five horizontal scrollbars in a row
*/
vert_offset = horiz_offset;
for (i = 0; i < SCROLLBAR_NUM; i++)
{

sprintf(name, "horiz_sb_%d", i+1);
sb = xvw_create_scrollbar(manager, name);
xvw_set_attributes(sb,

XVW_BELOW, vert_offset, /* under vertical sb set */
XVW_ORIENTATION, KSCROLLBAR_ORIENT_HORIZ, /* horizontal */
XVW_CHAR_WIDTH, 20.0, /* 20 chars wide */
XVW_CHAR_HEIGHT, 1.0, /* 1 chars high */
XVW_SCROLL_MIN, 0.0, /* min value of 0 */
XVW_SCROLL_MAX, 100.0, /* max value of 100 */
XVW_SCROLL_VALUE, ((double)i)*10.0, /* value = last val * 10 */
NULL);

vert_offset = sb;

2-117

Xvwidgets Program Services Volume III - Chapter 2

xvw_add_callback(sb, XVW_SCROLL_CONT_MOTION,
scrollbar_cb, NULL);

xvw_add_callback(sb, XVW_SCROLL_INCR_MOTION,
scrollbar_cb, NULL);

}

/* display & run the program */
xvf_run_form();

}

void scrollbar_cb (
xvobject object,
kaddr client_data,
kaddr call_data)

{
double value;
double *movement = (double *) call_data;

/*
* a scrollbar object is one of the few objects that uses a call_data
* structure. it needs to => return information to the caller,
* so that information is returned via the call_data. The data type
* of the call_data is determined by the object itself; a scrollbar
* object uses a call_data of type "double *". The movement of the
* scrollbar returned by the call_data is identical to the value
* obtained by using the XVW_SCROLL_VALUE attribute, so you can
* get the value of the scrollbar either way.
*/

xvw_get_attribute(object, XVW_SCROLL_VALUE, &value);
kfprintf(kstderr, "value = %f\n", value);
kfprintf(kstderr, "movement = %f\n", *movement);

}

2-118

Xvwidgets Program Services Volume III - Chapter 2

O. The Text Widget

Figure 8: The text widget is most commonly used as a sub-part of other widgets in VisiQuest.

O.1. xvw_create_text() — create a text object

Synopsis
xvobject xvw_create_text(

xvobject parent,
char *name)

Input Arguments
parent

parent of the text object
name

a name for this particular instance of the text object (for use in app-defaults files, etc)

Returns
The text GUI object on success, NULL on failure.

Description
The text object allows the display and editing of text.

2-119

Xvwidgets Program Services Volume III - Chapter 2

O.2. About the Text Object

The VisiQuest 2001 text object may be single-line or multi-line. It may display read-only text, or allow the
editing of read-write text. The source for default text may be specified directly from within the application
(hard-coded) or may be contained in a file. The text object supports normal cut and paste operations. It offers a
number of key bindings. Word and line wrapping are also supported.

O.2.1. Single-Line vs. Multi-line Text Objects

Te xt objects may be used to edit and/or display a single line of text or multiple lines of text. Functionality of
multi-line text objects is the same as that of single-line text objects, except for the following:

If text containing a line feed is pasted to a multi-line text object, the line feed is retained; however,
in a single-line text object, a line feed is replaced with a space (both types of text objects replace
unprintable characters with a space).

With a single-line text widget, the application may install a callback that will be fired when the
user enters <return>. By definition, no such callback may be installed on a multi-line text widget,
as <return> in the text of a multi-line text widget must be used to indicate line feed.

Multi-line text objects may be of any height; single-line text objects will always be 1 character in
height.

Multi-line text objects may do text wrapping if directed to do so by the application; by definition,
single-line text objects do not allow text wrapping.

O.2.2. Cursor Placement

Location of the cursor may be set by clicking the left mouse button at the desired location in the text, or by
using the supported key bindings (see following section).

O.2.3. Navigation of Multi-line Text Objects

Multi-line text objects may contain more text than can be displayed in the text window. Because automatic
addition of scrollbars is not yet supported (but planned for a future VisiQuest release), key bindings must be
used to navigate the text. The arrow keys may be used to move up, down, left, and right. Other key bindings
are also provided to move to the beginning or the end of a line, or to move up or down a page. Other key bind-
ings allow movement forward or backward word by word, or paragraph by paragraph.

O.2.4. Read-Only vs. Read-Write Text Objects

Te xt objects may display text that is not writable, or may allow the user to edit the text. Regardless of whether
the text is read-only or read-write, a cursor will appear. This is so that the user may use the text object’s key
bindings to scroll through text that may not all fit within the text window, since automatic addition of vertical
and horizontal scrollbars to the text object is not yet supported. Any attempt to edit text in a read-only text

2-120

Xvwidgets Program Services Volume III - Chapter 2

object will ring the bell.

O.2.5. Text Focus

When the pointer is moved into the text window, the border of the text object will be highlighted, and the cur-
sor will blink. The contents of read-write text objects may be modified at this time; the contents of both read-
only and read-write text objects may be navigated using key bindings. Clicking in the text window, howev er,
will not cause the text object to grab the keyboard; in other words, if the pointer leaves the text window, text
focus will be lost.

O.2.6. Specified Text Source vs. File Containing Text Source

The text object will allow the application to specify the text to be displayed directly (see XVW_TEXT_STRING)
or may specify the path to a file that contains the text to be displayed (see XVW_TEXT_FILENAME). Specify
one or the other, not both. When using a file, full paths specified with ${TOOLBOX} are recommended.

O.2.7. Text Wrapping

When the text lines of a multi-line text object exceed the width of the text window, text wrapping may be
implemented. Text wrapping dictates that text lines are to be automatically broken in an attempt to get all lines
within the width of the text window. Since single-line text objects only allow a single line of text, text wrap-
ping applies to multi-line text objects only. For multi-line text, the text object supports three wrapping modes:

no wrap
No text wrapping is done.

word wrap
The text object will wrap the text at the last word that will fit within the width of the text window.
If a single word is wider than the text object, that word will still extend past the right hand side of
the window; the user will be required to use key bindings to see the end of the word.

line wrapping
The text object will wrap text at the last character that will fit within the width of the text window.

O.2.8. Cut and Paste

The text object provides for cut and paste operations.

Te xt highlighted in another text object, another application, or another window may be pasted into the text
object at the location of the pointer by pressing the middle mouse button with the pointer at the desired loca-
tion in the text. To paste text at the location of the cursor, first highlight the desired text. Move the cursor to
the desired location, and then press "<Ctrl>+Y" or "<Ctrl>+Insert" to paste the text at the cursor location.

Note that when the cursor is moved, or any key bindings are used to navigate the text window, any portion of
the text that is highlighted in the text object will be un-highlighted. However, the previously highlighted text

2-121

Xvwidgets Program Services Volume III - Chapter 2

will remain in the cut buffer until the contents of the cut buffer is over-ridden with a new highlighting opera-
tion. Thus, a paste operation will always paste the most recent contents of the cut buffer. If those contents
originated in the text object, the source text may or may not be highlighted in the text object, depending on
whether any text window navigation was done in the interim.

Highlighting of text to be be stored in the cut buffer may be done in one of four ways:

An arbitrary text region may be highlighted by pressing the left mouse button at the beginning of
the desired text, and holding the mouse button down while moving the mouse to the end of the text.

A single word may be highlighted by double-clicking the left mouse button on the desired word.

A line of text may be highlighted by triple-clicking the left mouse button on the desired line.

The entire contents of the text widget may be highlighted by quadruple-clicking the left mouse but-
ton anywhere in the text window.

O.2.9. Text Object Key Bindings

The text object supports a variety of key bindings. These are as described in the following table. Many are
standard Motif-compliant key bindings; others are provided to emulate the most basic of the emacs key bind-
ings.

Text Object Key Bindings

Key Binding Description

Up arrow

{Ctrl} p

Moves cursor one line up

Down arrow

{Ctrl} n

Moves cursor one line down

Left arrow

{Ctrl} b

Moves cursor one character to the left (if cursor has to move up a line,

x location will be reset to 0)

Right arrow

{Ctrl} f

Moves cursor one character to the right (if cursor has to move down a line,

x location will be reset to 0)

Home,

{Ctrl} a

Moves to beginning of current line

End,

{Ctrl} e

Moves to end of current line

Page Up

Prior

{Meta} v

Moves back (up) one page

Page Down

Next

{Ctrl} v

Moves forward (down) one page

2-122

Xvwidgets Program Services Volume III - Chapter 2

Text Object Key Bindings

Key Binding Description

{Ctrl} Up Arrow Moves to beginning of current paragraph (or to previous paragraph if cursor

already at paragraph beginning)

{Ctrl} Down Arrow Moves to beginning of next paragraph

{Ctrl} Left Arrow

{Meta} b

Moves to beginning of current word (or to beginning of next word if cursor

is already at a word beginning)

{Ctrl} Right Arrow

{Meta} f

Moves to beginning of next word

{Ctrl} Home Moves to beginning of text

{Ctrl} End Moves to end of text

{Ctrl} Insert,

{Ctrl} y

Pastes contents of cut buffer to location of cursor

O.2.10. Attributes of the Text Object

Summary of Text Attributes

Attribute Description

XVW_TEXT_EDIT_TYPE The text in the text object may be read-only, or read-write. Specify

KTEXT_READ for the former, or KTEXT_EDIT

XVW_TEXT_ENTER_STRING If desired, xvw_add_callback() may be used to install a callback on the

text object text object which will be fired when the user enters <return>

in the text window. must be reserved to indicate a carriage return. The

callback should be installed as follows:

xvw_add_callback(text_object, XVW_TEXT_ENTER_STRING,

callback, client_data);

The string that was entered will be sent to the callback as the call_data.

Before using, the string must be cast to its proper data type, as in:

kstring string = (kstring) call_data;

XVW_TEXT_FILENAME The name of the file whose contents is displayed in the text object. It is

mutually exclusive with XVW_TEXT_STRING; use one or the other, not

both simultaneously.

XVW_TEXT_INSERT_POS The location of the cursor in the string, where each number represents a

character. For example, if XVW_TEXT_INSERT_POS was set to 5, that

would mean that the cursor appeared 5 letters into the string.

XVW_TEXT_LEFT_MARGIN The number of pixels from the leftmost edge of the text object that the

string will be displayed.

XVW_TEXT_MULTILINE Control whether or not more than one line of text can be displayed. Set

to TRUE if you want to display more than one line of text.

2-123

Xvwidgets Program Services Volume III - Chapter 2

Summary of Text Attributes

Attribute Description

XVW_TEXT_STRING The string that is displayed in the text object. It is mutually exclusive

with XVW_TEXT_FILENAME; use one or the other, not both simultane-

ously.

XVW_TEXT_WRAP Used with multi-line text objects only, this attribute controls if and how

text is wrapped when it is longer than the text object’s width. The text

may be left unwrapped, it may wrap on a line which may divide words,

or attempt to wrap on words which will leave words intact.

KTEXT_WRAP_NEVER- don’t wrap text

KTEXT_WRAP_LINE- wrap text on lines (may break up words)

KTEXT_WRAP_WORD- wrap text on words (attempt to not break up

words). With single-line text objects, this attribute is ignored; wrap-

ping is never done.

Descriptions of Text Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_TEXT_EDIT_TYPE

(N/A)

int KTEXT_EDIT KTEXT_READ

KTEXT_EDIT

XVW_TEXT_ENTER_STRING

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_TEXT_FILENAME

(N/A)

char * NULL name of any existing file with readable

text

XVW_TEXT_INSERT_POS

(TextLabel.labelCursorPos)

int 0 0 <= value <= length of currently dis-

played text

XVW_TEXT_LEFT_MARGIN

(textLeftMargin)

unsigned

short

0 values >= 0

XVW_TEXT_MULTILINE

(textMultiline)

int FALSE TRUE/FALSE

XVW_TEXT_STRING

(N/A)

char * NULL any printable text

XVW_TEXT_WRAP

(textWrap)

int KTEXT_WRAP_NEVER KTEXT_WRAP_WORD

KTEXT_WRAP_NEVER

KTEXT_WRAP_LINE

2-124

Xvwidgets Program Services Volume III - Chapter 2

O.3. About Callbacks on Text Objects

When the user enters <return> in a single-line text widget, software control may be passed to an installed call-
back. The callback to which the text object will pass control must be installed on the text object by the appli-
cation after the text object is created, with a call of the composition:

xvw_add_callback(text_object, XVW_TEXT_ENTER_STRING,
callback, client_data);

The callback routine must be defined according to the syntax:

void callback(
xvobject object,
kaddr client_data,
kaddr call_data)

{
/* cast call_data so that "contents" is the text currently

appearing in the text object */
kstring contents = *(kstring *) call_data;

/* do something with the "contents" string */
}

2-125

Xvwidgets Program Services Volume III - Chapter 2

P. The Viewport Object

Figure 9: The Viewport GUI object provides a scrollable area in which various other GUI objects may be
placed. Here, the compound list GUI object uses a viewport as one of its two components.

P.1. xvw_create_viewport() — create a viewport object

Synopsis
xvobject xvw_create_viewport(

xvobject parent,
char *name)

Input Arguments
parent

parent of the viewport object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The viewport object on success, NULL on failure

2-126

Xvwidgets Program Services Volume III - Chapter 2

Description
Creates a viewport widget. The viewport provides a way of restricting a potentially overlarge display to
a predefined area, while at the same time allowing its contents (consisting of other GUI objects) to
occupy as much space as necessary.

The viewport object is made up of four other GUI objects: a "plane" object, a clip object, a vertical
scrollbar, and a horizontal scrollbar.

The plane object component of the viewport object implements a "virtual area", only part of which can
be seen in the viewport. The plane object is the actual parent of the viewport’s children; in this way,
the the object(s) created inside the viewport can take up more space than the viewport itself.

The clip object component of the viewport is what dictates the size of the viewport itself. By clipping
out all portions of the plane object that lie outside the bounds of the viewport size, the contents of the
viewport are only visible when they are in the predefined range.

The viewport contains horizontal and vertical scrollbars; these scrollbars are used to control which por-
tion of the plane object is visible in the viewport.

plane object

horizontal scrollbar

vertical

scrollbar

clip object

Figure 10: The viewport object is made up of a "plane" object, a clip object, a vertical scrollbar, and a
horizontal scrollbar.

2-127

Xvwidgets Program Services Volume III - Chapter 2

P.2. Attributes of the Viewport Object

Summary of Viewport Attributes

Attribute Description

XVW_VP_ALLOW_HORIZ Set to TRUE if a horizontal scrollbar should appear if it is needed.

XVW_VP_ALLOW_VERT Set to TRUE if a vertical scrollbar should appear if it is needed.

XVW_VP_CLIP_OBJECT This is the clip object component of the viewport; it serves as the view-

port to the plane object.

XVW_VP_FORCE_HORIZ Set to TRUE if a horizontal scrollbar should always appear. Only valid

if XVW_VP_ALLOW_HORIZ is TRUE.

XVW_VP_FORCE_VERT Set to TRUE if a vertical scrollbar should always appear. Only valid if

XVW_VP_ALLOW_VERT is TRUE.

XVW_VP_HORIZONTAL_SCROLLBAR This is a read-only attribute that will return the pointer to the xvobject

for the horizontal scrollbar.

XVW_VP_PLANE_OBJECT This is the plane object component of the viewport; children of the

viewport created by the application are actually created as children of

this plane object, not of the viewport itself.

XVW_VP_USE_BOTTOM Set to TRUE if the horizontal scrollbar should appear at the bottom of

the viewport; set to FALSE to make the horizontal scrollbar appear at

the top of the viewport.

XVW_VP_USE_RIGHT Set to TRUE if the vertical scrollbar should appear at the right of the

viewport; set to FALSE to make the vertical scrollbar appear at the left

of the viewport.

XVW_VP_VERTICAL_SCROLLBAR This is a read-only attribute that will return the pointer to the xvobject

for the vertical scrollbar.

XVW_VP_XOFFSET The offset of the viewport in pixels from the left side.

XVW_VP_YOFFSET The offset of the viewport in pixels from the top.

Descriptions of Viewport Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_VP_ALLOW_HORIZ

(vpAllowHoriz)

int FALSE TRUE/FALSE

XVW_VP_ALLOW_VERT

(vpAllowVert)

int TRUE TRUE/FALSE

XVW_VP_CLIP_OBJECT

(N/A)

xvobject NULL valid xvobject

XVW_VP_FORCE_HORIZ

(vpForceHoriz)

int FALSE TRUE/FALSE

XVW_VP_FORCE_VERT

(vpForceVert)

int TRUE TRUE/FALSE

2-128

Xvwidgets Program Services Volume III - Chapter 2

Descriptions of Viewport Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_VP_HORIZONTAL_SCROLLBAR

(N/A)

xvobject NULL valid xvobject

XVW_VP_PLANE_OBJECT

(N/A)

xvobject NULL valid xvobject

XVW_VP_USE_BOTTOM

(vpUseBottom)

int TRUE TRUE/FALSE

XVW_VP_USE_RIGHT

(vpUseRight)

int FALSE TRUE/FALSE

XVW_VP_VERTICAL_SCROLLBAR

(N/A)

xvobject NULL valid xvobject

XVW_VP_XOFFSET

(vpXoffset)

int 0 value >= 0

XVW_VP_YOFFSET

(vpYoffset)

int 0 values >= 0

P.3. Complete Resource Set of the Viewport Object

The complete resource set for the viewport object includes:

1. The viewport object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Section C.2, "Attributes of the
VisiQuest 2001 Manager Object".

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

P.4. Example using the Viewport Object

An example program using the textinput object can be found in $DESIGN/examples/xvwid-
gets/viewport/example.c.

2-129

Xvwidgets Program Services Volume III - Chapter 2

This page left intentionally blank

2-130

Table of Contents

A. Introduction . 2-1
A.1. xvw_initialize() — initialize the xvwidgets library 2-4

B. General Attributes Of GUI & Visual Objects 2-5
B.1. Pixel Geometry . 2-5
B.2. Character Geometry . 2-6
B.3. Colors, Fonts, and Cursors . 2-7

C. Toplevel (Shell) Objects . 2-12
C.1. xvw_create_application_shell() — create an application shell object 2-13
C.2. xvw_create_transient_shell() — create a transient shell object 2-14
C.3. Attributes of the Shell Object . 2-14

D. Setting And Getting Attributes . 2-17
D.1. xvw_set_attribute() — set a single attribute on an object 2-18
D.2. xvw_get_attribute() — get a single attribute of an object 2-18
D.3. xvw_set_attributes() — set attributes on an object (variable argument list) 2-19
D.4. xvw_get_attributes() — get attributes from an object (variable argument list) 2-20

E. The VisiQuest 2001 Manager Object . 2-21
E.1. xvw_create_manager() — create a VisiQuest Manager object 2-23
E.2. Attributes of the VisiQuest 2001 Manager Object 2-24

E.2.1. Relative Layout Attributes . 2-24
E.2.2. Pixel Geometry Bounds Attributes 2-26
E.2.3. Preferred Sizing Attributes . 2-26
E.2.4. Pixel Spacing Attributes . 2-27
E.2.5. Tacking Attributes . 2-28
E.2.6. Attributes That Control Direct Manipulation of Children 2-30

E.3. Attributes of the VisiQuest 2001 Manager Gadget 2-35
F. Callbacks, Event/Action/Input Handlers, & Timeouts 2-36

F.1. Using Callbacks . 2-37
F.1.1. xvw_add_callback() — add a callback to a GUI object 2-37
F.1.2. xvw_remove_callback() — remove a callback from a GUI object 2-38
F.1.3. Callback Example . 2-40

F.2. Using Event Handlers . 2-41
F.2.1. xvw_add_event() — add an event handler to an object 2-41
F.2.2. xvw_insert_event() — insert an event handler into an object’s event list. 2-43
F.2.3. xvw_remove_event() — remove an event handler from an object 2-44
F.2.4. Event Handler Example . 2-44

F.3. Using Action Handlers . 2-46
F.3.1. xvw_add_action() — add an action handler to an object 2-46
F.3.2. xvw_remove_action() — remove an action handler from an object 2-48
F.3.3. Action Handler Example . 2-49

F.4. Using Input Handlers . 2-49
F.4.1. xvw_add_detectfile() — add a (file) detect handler to an object 2-49
F.4.2. xvw_remove_detectfile() — remove a (file) detect handler from an object 2-51
F.4.3. xvw_add_detectfid() — add (fid) input handler to an object 2-51
F.4.4. xvw_remove_detectfid() — remove (fid) input handler from an object 2-53

F.5. Using Timeouts . 2-53
F.5.1. xvw_add_timeout() — add a timeout to an object 2-54
F.5.2. xvw_remove_timeout() — removes a timeout from an object 2-55

- i -

Xvwidgets Program Services Volume III - Chapter 2

F.5.3. Timeout Example . 2-55
F.6. About Client Data . 2-56

F.6.1. Client Data Example 1 . 2-57
F.6.2. Client Data Example 2 . 2-59
F.6.3. Client Data Example 3 . 2-60

G. General Utilities For Visual & GUI Objects 2-63
G.1. xvw_appcontext() — return the application context associated with a object 2-63
G.2. xvw_busy() — set an object to be busy or not busy 2-64
G.3. xvw_check_managed() — see if an object is managed 2-64
G.4. xvw_check_mapped() — see if an object is mapped 2-65
G.5. xvw_check_menuactive() — see if an object’s internal menuform is displayed 2-65
G.6. xvw_check_menuexist() — check if an object has an internal menuform 2-66
G.7. xvw_check_realized() — see if an object is realized 2-66
G.8. xvw_check_sensitive() — see if an object is sensitive 2-67
G.9. xvw_check_subclass() — check the subclass of an object 2-67
G.10. xvw_check_toplevel() — see if object specified is a toplevel, or see if a toplevel exists 2-68
G.11. xvw_check_visible() — see if an object is visible 2-68
G.12. xvw_children() — get the children of an object 2-69
G.13. xvw_colormap() — get the colormap associated with a object 2-69
G.14. xvw_class() — get the class of the object 2-70
G.15. xvw_create() — create a new object 2-70
G.16. xvw_destroy() — destroy an object 2-71
G.17. xvw_display() — returns the display associated with a object 2-71
G.18. xvw_duplicate() — duplicate an object 2-72
G.19. xvw_font() — return the font being used by a object 2-72
G.20. xvw_fontname() — return the font name being used by an object 2-73
G.21. xvw_geometry() — get the geometry of an object 2-73
G.22. xvw_lower() — lower an object . 2-74
G.23. xvw_manage() — manage an object 2-75
G.24. xvw_map() — map an object . 2-75
G.25. xvw_name() — get the name of the object 2-75
G.26. xvw_numchildren() — get the number of children of an object 2-76
G.27. xvw_object() — get the object associated with a particular widget 2-76
G.28. xvw_parent() — get the parent of an object 2-77
G.29. xvw_place() — place an object on the screen 2-77
G.30. xvw_raise() — raise an object . 2-78
G.31. xvw_realize() — realize an object . 2-79
G.32. xvw_refresh() — refreshes an object 2-79
G.33. xvw_rootwindow() — get the root window associated with an object 2-79
G.34. xvw_sensitive() — sensitize or de-sensitize an object 2-80
G.35. xvw_screen() — return the screen associated with a object 2-80
G.36. xvw_screennum() — return the screen number associated with an object 2-81
G.37. xvw_sort() — sort a list of objects . 2-81
G.38. xvw_toplevel() — get the toplevel object of an object 2-82
G.39. xvw_unmanage() — unmanage an object 2-82
G.40. xvw_unrealize() — un-realize an object 2-83
G.41. xvw_unmap() — unmap an object . 2-83
G.42. xvw_visual() — get the visual associated with an object 2-84
G.43. xvw_widget() — get the widget (or gadget) associated with an object 2-84
G.44. xvw_window() — get the window associated with an object 2-85

- ii -

Xvwidgets Program Services Volume III - Chapter 2

H. The Button Object . 2-85
H.1. xvw_create_button() — create a button object 2-85
H.2. Attributes of the Button Object . 2-86
H.3. About Callbacks on Buttons . 2-88

I. The Label Object . 2-89
I.1. xvw_create_label() — create a label object 2-89
I.2. Attributes of the Label Object . 2-90
I.3. Button & Label Example . 2-91

J. The List Object . 2-93
J.1. xvw_create_list() — create a list object 2-93
J.2. Attributes of the List Object . 2-94
J.3. About Callbacks on Lists . 2-96
J.4. List Example . 2-97

K. The Menu & MenuButton Objects . 2-101
K.1. xvw_create_menubutton() — create a menubutton object 2-101
K.2. xvw_create_menu() — create a menu object 2-102
K.3. MenuButton Example . 2-103
K.4. About Callbacks on Menubuttons . 2-106

L. The Pixmap Object . 2-107
L.1. xvw_create_pixmap() — create a pixmap object 2-107
L.2. Attributes of the Pixmap Object . 2-108
L.3. Complete Resource Set of the Pixmap Object 2-109
L.4. Example using the Pixmap Object . 2-109

M. The Rowcol Object . 2-110
M.1. xvw_create_rowcol() — create a row-col object 2-110
M.2. Attributes of the RowCol Object . 2-111
M.3. Complete Resource Set of the RowCol Object 2-112
M.4. Example using the RowCol Object 2-112

N. The Scrollbar Object . 2-113
N.1. xvw_create_scrollbar() — create a scrollbar object 2-113
N.2. Attributes of the Scrollbar Object . 2-114
N.3. About Callbacks on Scrollbars . 2-115
N.4. Scrollbar Example . 2-116

O. The Text Widget . 2-119
O.1. xvw_create_text() — create a text object 2-119
O.2. About the Text Object . 2-120

O.2.1. Single-Line vs. Multi-line Text Objects 2-120
O.2.2. Cursor Placement . 2-120
O.2.3. Navigation of Multi-line Text Objects 2-120
O.2.4. Read-Only vs. Read-Write Text Objects 2-120
O.2.5. Text Focus . 2-121
O.2.6. Specified Text Source vs. File Containing Text Source 2-121
O.2.7. Text Wrapping . 2-121
O.2.8. Cut and Paste . 2-121
O.2.9. Text Object Key Bindings . 2-122
O.2.10. Attributes of the Text Object . 2-123

O.3. About Callbacks on Text Objects . 2-125
P. The Viewport Object . 2-126

P.1. xvw_create_viewport() — create a viewport object 2-126
P.2. Attributes of the Viewport Object . 2-128

- iii -

Xvwidgets Program Services Volume III - Chapter 2

P.3. Complete Resource Set of the Viewport Object 2-129
P.4. Example using the Viewport Object 2-129

- iv -

Program Services Volume III

Chapter 3

Xvobjects

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 3 - Xvobjects

A. Introduction

The xvobjects library provides a number of special-purpose GUI objects that were written especially for use in
VisiQuest 2001. Compound GUI objects for input of parameters are provided, such as the browser object, the
double object, the float object, the integer object, and the textinput object. In addition, the xvobjects library
contains the GUI objects intended for interactive notification, specifically the error object, the info object, the
warn object, and the notifywindow object. GUI objects meant for use as special-purpose backplanes are also
included here, such as the canvas, the layout, and the rootwindow objects.

Av ailable Functions

• xvw_create_browser() - create a browser GUI object
• xvw_create_canvas() - create a canvas object
• xvw_create_connection() - create a connection object
• xvw_create_double() - creates a double object
• xvw_create_error() - create an error object
• xvw_create_float() - create a float object
• xvw_create_help() - create a help object
• xvw_create_info() - create an info object
• xvw_create_inputfile() - create a inputfile GUI object
• xvw_create_integer() - create an integer GUI object
• xvw_create_layout() - create a layout object
• xvw_create_notifywindow() - create a notifywindow object
• xvw_create_outputfile() - create a outputfile GUI object
• xvw_create_rootwindow() - create a rootwindow object
• xvw_create_textdisplay() - create a textdisplay object
• xvw_create_textinput() - create a textinput object
• xvw_create_warn() - create a warning object

3-1

Xvobjects Program Services Volume III - Chapter 3

B. The Browser Object

Figure 1: The browser object is used throughout the VisiQuest system; it is popped up when the user clicks
on the label button of an InputFile or OutputFile selection.

B.1. xvw_create_browser() — create a browser GUI object

Synopsis
xvobject xvw_create_browser(

xvobject parent,
char *name)

Input Arguments
parent

parent of the browser object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

3-2

Xvobjects Program Services Volume III - Chapter 3

Returns
The browser object on success, NULL on failure

Description
The browser GUI object allows the user to enter an input file. It features a list object in which the user
may select a file, or a text box in which the user may type in the filename; the filename is registered
when the user hits <cr> or selects a file from the browser list.

The browser GUI object consists of a manager object with six children: two button object, a list object,
a label object, a textinput object, and a textinput object.

A callback can be installed on the browser object, which will be fired when the user enters a new file-
name.

B.2. Attributes of the Browser Object

Summary of Browser Attributes

Attribute Description

XVW_BROWSER_ALIASES_PIXMAP This is the pixmap that appears to the upper left of the browser object

when the browser is in aliases mode. Candidates for the value of this

attribute may be created with the use of XCreatePixmap(); see The Xlib

Reference Manual by O’Reilly and Associates. Note that this attribute

is mutually exclusive with XVW_BROWSER_PIXMAPFILE; specify one or

the other, not both.

XVW_BROWSER_ALIASES_PIXMAPFILE This is the file defining the pixmap that appears at the upper left of the

browser object when the browser is in aliases mode.

XVW_BROWSER_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

browser object which will be fired when the user enters new text and

presses <cr>. When calling xvw_add_callback(), pass this attribute

directly, as in

xvw_add_callback(browserobj, XVW_BROWSER_CALLBACK,

browser_cb, client_data);

Note that the current text appearing in the browser object will be passed

to the callback in the call_data. The value must be cast to a string

before use, as in:

char *string = *((char **) call_data);

Alternatively, the filename may be obtained with XVW_BROWSER_TEXT .

XVW_BROWSER_DESTROY_ON_QUIT If FALSE, the browser object will not be destroyed when the user

clicks on the "Cancel" button or selects a file, but will simply be

unmapped so that it can be used again.

3-3

Xvobjects Program Services Volume III - Chapter 3

Summary of Browser Attributes

Attribute Description

XVW_BROWSER_DIRECTORY This attribute allows you to set or get the directory currently selected

within the browser.

XVW_BROWSER_DIRECTORY_PIXMAP This is the pixmap that appears to the upper left of the browser object

when the browser is in directory mode. Candidates for the value of this

attribute may be created with the use of XCreatePixmap(); see The Xlib

Reference Manual by O’Reilly and Associates. Note that this attribute

is mutually exclusive with XVW_BROWSER_PIXMAPFILE; specify one or

the other, not both.

XVW_BROWSER_DIRECTORY_PIXMAPFILE This is the file defining the pixmap that appears at the upper left of the

browser object when the browser is in directory mode.

XVW_BROWSER_TYPE This attribute allows you to set the type of browser, which modifies the

browser behavior.

Descriptions of Browser Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_BROWSER_ALIASES_PIXMAP

(N/A)

Pixmap The "aliases

browser" pixmap.

Valid Pixmap structure

XVW_BROWSER_ALIASES_PIXMAPFILE

(browserAliasesPixmapfile)

char * The browser.xpm

file in the xvob-

jects/misc/pixmaps

directory, which

defines the

"aliases browser"

pixmap.

The full path to a valid xpm or xbm file,

defining the desired pixmap. Note that the

path may contain $TOOLBOX.

XVW_BROWSER_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_BROWSER_DESTROY_ON_QUIT

(browserDestroyOnQuit)

int TRUE TRUE/FALSE

XVW_BROWSER_DIRECTORY

(browserDirectory)

char * NULL any leg al directory path

XVW_BROWSER_DIRECTORY_PIXMAP

(N/A)

Pixmap The "directory

browser" pixmap.

Valid Pixmap structure

3-4

Xvobjects Program Services Volume III - Chapter 3

Descriptions of Browser Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_BROWSER_DIRECTORY_PIXMAPFILE

(browserDirectoryPixmapfile)

char * The browser.xpm

file in the xvob-

jects/misc/pixmaps

directory, which

defines the

"directory

browser" pixmap.

The full path to a valid xpm or xbm file,

defining the desired pixmap. Note that the

path may contain $TOOLBOX.

XVW_BROWSER_TYPE

(browserDirectory)

char * NULL any leg al directory path

B.3. Complete Resource Set of the Browser Manager Object

The complete resource set for the browser object includes:

1. The browser object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object".

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

B.4. Example using the Browser Object

An example program using the browser object can be found in $DESIGN/examples/xvob-
jects/browser/example.c.

#include <design.h>

/*
* This example creates a browser object and installs on it a callback
* which will print the file that was selected by the user.
*/

static void browser_cb PROTO((xvobject, kaddr, kaddr));

main(
int argc,
char *argv[])

{
xvobject browser;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */

3-5

Xvobjects Program Services Volume III - Chapter 3

if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

browser = xvw_create_browser(NULL, "browser");
xvw_add_callback(browser, XVW_BROWSER_CALLBACK, browser_cb, NULL);

/* that’s all! */
xvf_run_form();

}

static void browser_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
char *filename = *((char **) call_data);

if (filename == NULL)
kinfo(KFORCE, "No filename selected");

else kinfo(KFORCE, "The filename selected was ’%s’", filename);
}

3-6

Xvobjects Program Services Volume III - Chapter 3

C. The Canvas Object

Figure 2: The Canvas GUI object provides an area in which other GUI objects may be created.

C.1. xvw_create_canvas() — create a canvas object

Synopsis
xvobject xvw_create_canvas(

xvobject parent,
char *name)

Input Arguments
parent

parent of the canvas object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The canvas object on success, NULL on failure

Description
The canvas object is essentially a manager object combined with a virtual window size. The virtual
window is a viewport where a canvas may contain a vertical scrollbar, a horizontal scrollbar, or both.
In general, it is used to confine large visual displays to a predefined area. The canvas object may have
one or many children; usually, the object(s) created inside the canvas will take up more space than the
canvas itself, so that the scrollbar(s) of the canvas may be used to view the entire display. The canvas
object is similar to the viewport object, except the canvas provides an area for displaying graphical
objects, while the viewport object is typically only used to contain GUI objects. The canvas object
allows the application to set a default width and height, while the viewport will shrink its area to the
minimum size required to lay out all its children.

The canvas object also offers a global clipboard, which acts as a common cut and paste area for use by
all canvas objects that may be displayed at the same time, providing an easy method for the user to

3-7

Xvobjects Program Services Volume III - Chapter 3

transfer objects from one canvas to another.

C.2. Attributes of the Canvas Manager Object

Summary of Canvas Attributes

Attribute Description

XVW_CANVAS_COPY This action attribute copies the currently selected objects in the cavas

into the global clipboard. The clipboard is global to all displayed can-

vas objects, regardless of whether or not the different canvas objects

have different parents. If no object on the canvas has been selected, a

warning message will be issued.

XVW_CANVAS_CUT This action attribute moves the currently selected objects in the canvas

into the global clipboard. The clipboard is global to all displayed can-

vas objects, regardless of whether or not the different canvas objects

have different parents. If no object on the canvas has been selected, a

warning message will be issued.

XVW_CANVAS_DELETE This action attribute deletes all currently selected objects from the can-

vas. The objects are temporarily saved (until the next time the

XVW_CANVAS_DELETE action attribute is used), so that the delete opera-

tion can be undone by setting the XVW_CANVAS_UNDO action attribute.

If no object on the canvas has been selected, a warning message will be

issued.

XVW_CANVAS_DUPLICATE This action attribute duplicates the currently selected objects in the can-

vas. Any selected object duplicated; the duplicated objects are then

selected and positioned 10 pixels below and to the right of the originals.

If no object on the canvas has been selected, a warning message will be

issued.

XVW_CANVAS_GRID This attribute indicates when a grid should be displayed on the canvas.

KMANAGER_GRID_OFF specifies that the grid is always off. KMAN-

AGER_GRID_ON specifies that the grid is always on. KMAN-

AGER_GRID_EDIT specifies that the grid is only on when the canvas is

in "edit mode". The canvas can be put in edit mode by the user, or

through the application by setting the manager object attribute

XVW_EDIT_MODE_ON to TRUE. KMANAGER_GRID_SELECT specifies

that the grid is only displayed when a child of the canvas has been

selected by the user, or through the application by setting the manager

object attribute XVW_SELECT_ADD to TRUE.

XVW_CANVAS_GRIDSIZE The dimensions of the grid, given in pixels.

XVW_CANVAS_HEIGHT The canvas height of the canvas workspace plane.

XVW_CANVAS_LOWER This action attribute lowers the currently selected objects in the canvas

beneath any other objects that may overlap the same space. If no object

on the canvas has been selected, a warning message will be issued.

3-8

Xvobjects Program Services Volume III - Chapter 3

Summary of Canvas Attributes

Attribute Description

XVW_CANVAS_PASTE This action attribute pastes the contents of the currently selected objects

in the global clipboard into the canvas object. The clipboard is global

to all displayed canvas objects, regardless of whether or not the differ-

ent canvas objects have different parents. If no object on the clipboard

has been selected, a warning message will be issued.

XVW_CANVAS_RAISE This action attribute raises the currently selected objects in the canvas

beneath any other objects that may overlap the same space. If no object

on the canvas has been selected, a warning message will be issued.

XVW_CANVAS_SELECTALL This action attribute automatically selects all objects in the canvas,

unless the objects have been designated as "unselectable". An object is

made "unselectable" if its XVW_SELECTABLE attribute has been set to

FALSE.

XVW_CANVAS_UNDO This action attribute restores the object(s) that were most recently

deleted using the XVW_CANVAS_DELETE action attribute. If no object

on the canvas has been selected, a warning message will be issued.

XVW_CANVAS_UNSELECTALL This action attribute automatically unselects all currently selected

objects.

XVW_CANVAS_WIDTH The canvas width of the canvas workspace plane.

Descriptions of Canvas Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_CANVAS_COPY

(N/A)

int N/A TRUE

XVW_CANVAS_CUT

(N/A)

int N/A TRUE

XVW_CANVAS_DELETE

(N/A)

int N/A TRUE

XVW_CANVAS_DUPLICATE

(N/A)

int N/A TRUE

XVW_CANVAS_GRID

(canvasGrid)

int KMANAGER_GRID_ON KMANAGER_GRID_OFF

KMANAGER_GRID_ON

KMANAGER_GRID_EDIT

KMANAGER_GRID_SELECT

XVW_CANVAS_GRIDSIZE

(canvasGridsize)

int 15 value > 0

XVW_CANVAS_HEIGHT

(N/A)

int 3000 value > 0

XVW_CANVAS_LOWER

(N/A)

int N/A TRUE

XVW_CANVAS_PASTE

(N/A)

int N/A TRUE

3-9

Xvobjects Program Services Volume III - Chapter 3

Descriptions of Canvas Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_CANVAS_RAISE

(N/A)

int N/A TRUE

XVW_CANVAS_SELECTALL

(N/A)

int N/A TRUE

XVW_CANVAS_UNDO

(N/A)

int N/A TRUE

XVW_CANVAS_UNSELECTALL

(N/A)

int N/A TRUE

XVW_CANVAS_WIDTH

(N/A)

int 3000 value > 0

C.3. Complete Resource Set of the Canvas Manager Object

The complete resource set for the canvas object includes:

1. The canvas object attribute resource set, given in the previous section.

2. The viewport object attribute resource set, given in Section U.2, "Attributes of the Viewport
Object".

3. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object".

4. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

C.4. Example using the Canvas Object

An example program using the canvas object can be found in $DESIGN/examples/xvobjects/can-
vas/example.c.

#include <design.h>

/*
* This example creates a parent object with a button and a canvas object;
* then creates a button label on the canvas to act as a sample object
* that can be selected and moved about.
*
* The button above the canvas may be used to change
* the background pixmap of the canvas. (Mostly to show off all the
* cool background pixmaps available).
*/

static void change_background PROTO((xvobject, kaddr, kaddr));

3-10

Xvobjects Program Services Volume III - Chapter 3

main(
int argc,
char *argv[])

{
int gridsize = 20;
xvobject parent, canvas, button;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create parent to act as backplane */
parent = xvw_create_manager(NULL, "parent");

/*
* put a button at the top;

* install callback so user can change background
*/
button = xvw_create_button(parent, "button");
xvw_set_attributes(button,

XVW_BELOW, NULL,
XVW_RIGHT_OF, NULL,
XVW_LEFT_OF, NULL,
XVW_LABEL, "Change background",
NULL);

canvas = xvw_create_canvas(parent, "canvas");
xvw_set_attributes(canvas,

XVW_CANVAS_GRIDSIZE, gridsize,
XVW_BELOW, button,
XVW_WIDTH, 512,
XVW_HEIGHT, 512,
NULL);

xvw_add_callback(button, XVW_BUTTON_SELECT, change_background, canvas);

/* put a button near the top of the canvas to be an object
that can be moved around */

button = xvw_create_button(canvas, "button");
xvw_set_attributes(button,

XVW_LABEL, "sample object",
XVW_CHAR_XPOS, 10.0,
XVW_CHAR_YPOS, 10.0,
XVW_CHAR_HEIGHT, 2.0,
NULL);

/* and we’re off! */
xvf_run_form();

}

static void change_background(
xvobject object,

3-11

Xvobjects Program Services Volume III - Chapter 3

kaddr client_data,
kaddr call_data)

{
int indx;

static int count = 0;
xvobject canvas = (xvobject) client_data;

static char *filenames[] = {"backgrounds:hex_grid",
"backgrounds:brown_marble",
"backgrounds:black_marble",
"backgrounds:esher_grid",
"backgrounds:purple_marble",
"backgrounds:gravel_marble",
"backgrounds:purple_maze",
"backgrounds:wood_pulp",
"backgrounds:bw_marble"};

indx = count % knumber(filenames);
xvw_set_attribute(canvas, XVW_BACKGROUND_PIXMAPFILE, filenames[indx]);

count++;
}

3-12

Xvobjects Program Services Volume III - Chapter 3

D. The Connection Object

Figure 3: The connection object is used in cantata to connect two glyphs together.

D.1. xvw_create_connection() — create a connection object

Synopsis
xvobject xvw_create_connection(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The connection object on success, NULL on failure.

Description
The connection object provides a mechanism for visually linking two objects. It is used in cantata to
connect glyph objects together, but can be used to connect any two objects. A line will be drawn
between the two objects; the line will resize and redraw if either of the two objects are moved. Several
styles of connections are provided, which can be used to change the appearance of the connection.

3-13

Xvobjects Program Services Volume III - Chapter 3

D.2. Attributes of the Connection Object

Summary of Connection Attributes

Attribute Description

XVW_CONNECTION_BEGIN This specifies the first of the two visual or GUI objects to be connected.

XVW_CONNECTION_END This specifies the second of the two visual or GUI objects to be con-

nected.

XVW_CONNECTION_LINEWIDTH Controls the line width of connections

XVW_CONNECTION_TYPE This specifies the type of connection. May be one of: KCONNEC-

TION_TYPE_LINEAR: connects the objects with straight lines, acute

and obtuse angles if necessary.

KCONNECTION_TYPE_MANHATTAN: connects the objects with straight

lines, squares with right angles when necessary.

KCONNECTION_TYPE_SPLINE: connects the objects with a curved line.

KCONNECTION_TYPE_HEXAGON: finishes angles with a hexagon.

KCONNECTION_TYPE_DIAMOND: finishes angles with a diamond.

Descriptions of Connection Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_CONNECTION_BEGIN

(N/A)

xvobject NULL valid visual or GUI object

XVW_CONNECTION_END

(N/A)

xvobject NULL valid visual or GUI object

XVW_CONNECTION_LINEWIDTH

(connectionLinewidth)

int 1 1-9

XVW_CONNECTION_TYPE

(connectionType)

int KCONNECTION_TYPE_MAN-

HATTAN

KCONNECTION_TYPE_LINEAR

KCONNECTION_TYPE_MANHATTAN

KCONNECTION_TYPE_SPLINE

KCONNECTION_TYPE_HEXAGON

KCONNECTION_TYPE_DIAMOND

D.3. Complete Resource Set of the Connection Object

The complete resource set for the connection object includes:

1. The connection object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object".

3-14

Xvobjects Program Services Volume III - Chapter 3

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

.section 2 "Example using the Connection Object"

An example program using the Connection object can be found in $DESIGN/examples/xvlang/con-
nection/example.c. This program is as follows:

3-15

Xvobjects Program Services Volume III - Chapter 3

E. The Double Object

Figure 4: The Double GUI object provides an double text and scrollbar window in which the user may
enter an double value.

E.1. xvw_create_double() — creates a double object

Synopsis
xvobject xvw_create_double(

xvobject parent,
char *name)

Input Arguments
parent

parent of the double object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The double GUI object on success, NULL on failure.

Description
The double GUI object allows the user to enter a double precision value. It features a text box in
which the user may explicitly enter the double value; the double value is registered when the user hits
<cr>. The double value may be bounded by a minimum and maximum value, if desired.

A scroll bar provides an alternate way for the user to specify the double value. The double object con-
sists of a manager object with four children: a label object, a text object, a scrollbar, and a pixmap
object.

A callback can be installed on the double object, which will be fired when the user enters a new double
value.

3-16

Xvobjects Program Services Volume III - Chapter 3

E.2. Attributes of the Double Object

Summary of Double Attributes

Attribute Description

XVW_DOUBLE_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

double object which will be fired when user enters a new double value,

either by typing it in and pressing <cr>, or by using the scrollbar. When

calling xvw_add_callback(), pass this attribute directly, as in

xvw_add_callback(doubleobj, XVW_DOUBLE_CALLBACK,

doubleobj_cb, client_data);

Note that the current double precision value of the double object will be

passed to the callback in the call_data. The value must be cast to a

double pointer before use, as in:

double *value = (double *) call_data;

Alternatively, the double value may be obtained with XVW_DOU-

BLE_VALUE .

XVW_DOUBLE_CRLABEL_OBJECT This read-only attribute allows you to obtain the pixmap object compo-

nent of the the double object that indicates a "live" selection.

XVW_DOUBLE_INCREMENT The value to increment the scroll bar thumb.

XVW_DOUBLE_LABEL This is the text that will appear in the label object component of the

double object. Provide text appropriate as a title of the double object.

XVW_DOUBLE_LABEL_OBJECT This read-only attribute allows you to obtain the label object compo-

nent of the the double object.

XVW_DOUBLE_MAXVALUE The maximum double value allowed. If both XVW_DOUBLE_MINVALUE

and XVW_DOUBLE_MAXVALUE are 0.0, the double value is unbounded.

XVW_DOUBLE_MINVALUE The minimum double value allowed. If both XVW_DOUBLE_MINVALUE

and XVW_DOUBLE_MAXVALUE are 0.0, the double value is unbounded.

XVW_DOUBLE_SCROLLBAR_OBJECT This read-only attribute allows you to obtain the scrollbar object com-

ponent of the the double object.

XVW_DOUBLE_TEXT_OBJECT This read-only attribute allows you to obtain the text object component

of the the double object.

XVW_DOUBLE_VALUE The double precision value which is currently displayed in the text

object. This attribute can be used to initialize the double value to be

displayed in the text object, or to acquire a double value that has been

entered by the user in the text object.

3-17

Xvobjects Program Services Volume III - Chapter 3

Descriptions of Double Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_DOUBLE_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_DOUBLE_CRLABEL_OBJECT

(N/A)

xvobject NULL The pixmap object (read-only).

XVW_DOUBLE_INCREMENT

(N/A)

double calculated using

size of scrollbar

values < (maxvalue - minvalue)/2

XVW_DOUBLE_LABEL

(N/A)

char * NULL any printable text

XVW_DOUBLE_LABEL_OBJECT

(N/A)

xvobject NULL The label object (read-only).

XVW_DOUBLE_MAXVALUE

(N/A)

double 1.0 any double value

XVW_DOUBLE_MINVALUE

(N/A)

double 0.0 any double value

XVW_DOUBLE_SCROLLBAR_OBJECT

(N/A)

xvobject NULL The scrollbar object (read-only).

XVW_DOUBLE_TEXT_OBJECT

(N/A)

xvobject NULL The text object (read-only).

XVW_DOUBLE_VALUE

(N/A)

double 0.0 any double value

E.3. Complete Resource Set of the Double Object

The complete resource set for the double object includes:

1. The double object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object".

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

.section 2 "Example using the Double Object"

An example program using the double object can be found in $DESIGN/examples/xvobjects/dou-
ble/example.c.

3-18

Xvobjects Program Services Volume III - Chapter 3

#include <design.h>

/*
* This example creates a simple double GUI object, which may
* be used for allowing the user to enter a double.
*
* A callback is installed on the double object so that when the
* user changes the value of the double either by entering a number
* in the text parameter box and hitting <cr> or by using the scrollbar,
* the current value is printed to the tty.
*
* Note that the double object should *not* be created directly in an
* xvroutine, as use of the Double (-h) UIS line in the *.form file is
* both easier to use and a more standard use of the VisiQuest system.
* However, the double object is provided for use with hybrid xvroutines,
* (such as this example) which do not use a "formalized" GUI as defined
* in a *.form file.
*/

static void double_cb PROTO((xvobject, kaddr, kaddr));

main(
int argc,
char *argv[])

{
xvobject manager;
xvobject object;

/* initialize VisiQuest program
khoros_initialize(argc, argv, "DESIGN");

*/

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create a manager backplane to be a parent for the double object */
manager = xvw_create_manager(NULL, "parent");
xvw_set_attributes(manager,

XVW_WIDTH, 500,
XVW_HEIGHT, 100,

NULL);

/*
* Create the double object. give it a label, a default value,
* and bound it with a minimum value of 0 and a maximum value of
* 255. tack it horizontally to the parent so that it spans the
* width of the manager backplane. center it in the middle of
* the parent.

*/
object = xvw_create_double(manager, "double");
xvw_set_attributes(object,

XVW_DOUBLE_LABEL, "Double Trouble",
XVW_DOUBLE_MINVALUE, 0.0,
XVW_DOUBLE_MAXVALUE, 255.0,
XVW_DOUBLE_VALUE, 123.456,
XVW_TACK_EDGE, KMANAGER_TACK_HORIZ,

3-19

Xvobjects Program Services Volume III - Chapter 3

XVW_ABOVE, NULL,
XVW_BELOW, NULL,
NULL);

xvw_add_callback(object, XVW_DOUBLE_CALLBACK, double_cb, NULL);

/* display & run the program */
xvf_run_form();

}

/*
* the callback for the double will be fired when the user changes the
* value of the double, either by using the scrollbar or by entering
* a value in the text parameter box & hitting <cr>. this callback simply
* prints the current value of the double.
*/

static void double_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
double value;

xvw_get_attribute(object, XVW_DOUBLE_VALUE, &value);
kfprintf(kstderr, "Value = %g\n", value);

}

3-20

Xvobjects Program Services Volume III - Chapter 3

F. The Error Object

Figure 5: The error object is most often used indirectly, through kerror(), to print general information.

F.1. xvw_create_error() — create an error object

Synopsis
xvobject xvw_create_error(

xvobject parent,
char *name)

Input Arguments
parent

parent of the error widget; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The error object on success, NULL on failure

Description
The error object is a pop-up window that displays an error message. A stop sign icon on the upper left
hand side of the error object draws the attention of the user; a single button on the upper right hand
side of the error object allows the user to acknowledge the error message.

3-21

Xvobjects Program Services Volume III - Chapter 3

After the user clicks on the acknowledgment button, the error object is destroyed.

A callback can be installed on the error object, which will be fired when the user clicks on the
acknowledgment button.

F.2. Attributes of the Error Object

Summary of Error Attributes

Attribute Description

XVW_ERROR_BUTTON_LABEL The label for the acknowledgment button.

XVW_ERROR_BUTTON_OBJECT This read-only attribute allows you to obtain the the button object com-

ponent of the error object (the button used to allow the user to acknowl-

edge the error message).

XVW_ERROR_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

error object which will be fired when the user clicks on the acknowl-

edgement button. When calling xvw_add_callback(), pass this attribute

directly, as in

xvw_add_callback(errorobj, XVW_ERROR_CALLBACK,

error_cb, client_data);

XVW_ERROR_LABEL The label for the error object.

XVW_ERROR_LABEL_OBJECT This read-only attribute allows you to obtain the label object compo-

nent of the error object (the object used to display the label).

XVW_ERROR_MESSAGE The error message to be displayed in the error object.

XVW_ERROR_PIXMAP This is the pixmap that appears to the upper left of the error object.

Candidates for the value of this attribute may be created with the use of

XCreatePixmap(); see The Xlib Reference Manual by O’Reilly and As-

sociates. Note that this attribute is mutually exclusive with

XVW_ERROR_PIXMAPFILE; specify one or the other, not both.

XVW_ERROR_PIXMAPFILE This is the file defining the pixmap that appears at the upper left of the

error object.

XVW_ERROR_TEXT_OBJECT This read-only attribute allows you to obtain the the text object compo-

nent of the error object (the text displaying the error message).

Descriptions of Error Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_ERROR_BUTTON_LABEL

(N/A)

char * "Ok" any printable text

3-22

Xvobjects Program Services Volume III - Chapter 3

Descriptions of Error Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_ERROR_BUTTON_OBJECT

(N/A)

xvobject NULL The button object (read-only)

XVW_ERROR_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_ERROR_LABEL

(N/A)

char * NULL any printable text

XVW_ERROR_LABEL_OBJECT

(N/A)

xvobject NULL The label object (read-only).

XVW_ERROR_MESSAGE

(N/A)

char * NULL any printable text

XVW_ERROR_PIXMAP

(N/A)

Pixmap The "stop sign"

pixmap.

Valid Pixmap structure

XVW_ERROR_PIXMAPFILE

(errorPixmapfile)

char * The stopsign.xpm

file in the xvob-

jects/misc/pixmaps

directory, which

defines the "stop

sign" pixmap.

The full path to a valid xpm or xbm file,

defining the desired pixmap. Note that the

path may contain $TOOLBOX.

XVW_ERROR_TEXT_OBJECT

(N/A)

xvobject NULL The text object (read-only)

F.3. Complete Resource Set of the Error Object

The complete resource set for the error object includes:

1. The error object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object".

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

.section 2 "Example using the Error Object" An example program using the error object can be found in
$DESIGN/examples/xvobjects/error/example.c.

#include <design.h>

/*

3-23

Xvobjects Program Services Volume III - Chapter 3

* This example creates an error object to display an error message.
*
* IMPORTANT NOTE: in general, the error object should *not* be created
* directly; use of kerror() is the conventional way to
* create messages in VisiQuest, so that there is standard
* formatting enforced. this example is really only for
* academic purposes.
*/

main(
int argc,
char *argv[])

{
xvobject error;
xvobject toplevel;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* Create the error object. Note since the parent is NULL, a
* toplevel window will be created and the error object placed
* inside. Set the label, the message, the button label.
*/
error = xvw_create_error(NULL, "Error Message");
xvw_set_attributes(error,

XVW_ERROR_LABEL, "ERROR, ERROR!",
XVW_ERROR_MESSAGE, "This is a test of the error object. This is only a test. If th
XVW_ERROR_BUTTON_LABEL, "Ooops",
NULL);

/* display and run the program. */
xvf_run_form();

}

3-24

Xvobjects Program Services Volume III - Chapter 3

G. The Float Object

Figure 6: The Float GUI object provides an float text and scrollbar window in which the user may enter
an float value.

G.1. xvw_create_float() — create a float object

Synopsis
xvobject xvw_create_float(

xvobject parent,
char *name)

Input Arguments
parent

parent of the float object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The float GUI object on success, NULL on failure

Description
The float GUI object allows the user to enter a float precision value. It features a text box in which the
user may explicitly enter the float value; the float value is registered when the user hits <cr>. The float
value may be bounded by a minimum and maximum value, if desired.

A scroll bar provides an alternate way for the user to specify the float value. The float object consists
of a manager object with four children: a label object, a text object, a scrollbar, and a pixmap object.

A callback can be installed on the float object, which will be fired when the user enters a new float
value.

3-25

Xvobjects Program Services Volume III - Chapter 3

G.2. Attributes of the Float Object

Summary of Float Attributes

Attribute Description

XVW_FLOAT_CALLBACK If desired, xvw_add_callback() may be used to install a callback may

be installed on the float object which will be fired when the user enters

a new float value, either by typing it in and pressing <cr>, or by using

the scrollbar. When calling xvw_add_callback(), pass this attribute

directly, as in

xvw_add_callback(floatobj, XVW_FLOAT_CALLBACK,

float_cb, client_data);

Note that the current floating point value of the float object will be

passed to the callback in the call_data. The value must be cast to a

float pointer before use, as in:

float *value = (float *) call_data;

Alternatively, the float value may be obtained with XVW_FLOAT_VALUE .

XVW_FLOAT_CRLABEL_OBJECT This read-only attribute allows you to obtain the pixmap object compo-

nent of the the float object that indicates a "live" selection.

XVW_FLOAT_INCREMENT The value to increment the scroll bar thumb.

XVW_FLOAT_LABEL This is the text that will appear in the label object component of the

float object. Provide text appropriate as a title of the float object.

XVW_FLOAT_LABEL_OBJECT This read-only attribute allows you to obtain the label object compo-

nent of the the float object.

XVW_FLOAT_MAXVALUE The maximum float value allowed. If both XVW_FLOAT_MINVALUE and

XVW_FLOAT_MAXVALUE are 0.0, the float value is unbounded.

XVW_FLOAT_MINVALUE The minimum float value allowed. If both XVW_FLOAT_MINVALUE and

XVW_FLOAT_MAXVALUE are 0.0, the float value is unbounded.

XVW_FLOAT_SCROLLBAR_OBJECT This read-only attribute allows you to obtain the scrollbar object com-

ponent of the the float object.

XVW_FLOAT_TEXT_OBJECT This read-only attribute allows you to obtain the text object component

of the the float object.

XVW_FLOAT_VALUE The float precision value which is currently displayed in the text object.

This attribute can be used to initialize the float value to be displayed in

the text object, or to acquire a float value that has been entered by the

user in the text object.

3-26

Xvobjects Program Services Volume III - Chapter 3

Descriptions of Float Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_FLOAT_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_FLOAT_CRLABEL_OBJECT

(N/A)

xvobject NULL The pixmap object (read-only).

XVW_FLOAT_INCREMENT

(N/A)

float calculated using

size of scrollbar

values < (maxvalue - minvalue)/2

XVW_FLOAT_LABEL

(N/A)

char * NULL any printable text

XVW_FLOAT_LABEL_OBJECT

(N/A)

xvobject NULL The label object (read-only).

XVW_FLOAT_MAXVALUE

(N/A)

float 1.0 any float value

XVW_FLOAT_MINVALUE

(N/A)

float 0.0 any float value

XVW_FLOAT_SCROLLBAR_OBJECT

(N/A)

xvobject NULL The scrollbar object (read-only).

XVW_FLOAT_TEXT_OBJECT

(N/A)

xvobject NULL The text object (read-only).

XVW_FLOAT_VALUE

(N/A)

float 0.0 any float value

G.3. Complete Resource Set of the Float Object

The complete resource set for the float object includes:

1. The float object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object".

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

.section 2 "Example using the Float Object" An example program using the float object can be found in
$DESIGN/examples/xvobjects/float/example.c.

#include <design.h>

/*

3-27

Xvobjects Program Services Volume III - Chapter 3

* This example creates a simple float GUI object, which may
* be used for allowing the user to enter a float.
*
* A callback is installed on the float object so that when the
* user changes the value of the float either by entering a number
* in the text parameter box and hitting <cr> or by using the scrollbar,
* the current value is printed to the tty.
*
* Note that the float object should *not* be created directly in an
* xvroutine, as use of the Float (-f) UIS line in the *.form file is
* both easier to use and a more standard use of the VisiQuest system.
* However, the float object is provided for use with hybrid xvroutines,
* (such as this example) which do not use a "formalized" GUI as defined
* in a *.form file.
*/

static void float_cb PROTO((xvobject, kaddr, kaddr));

main(
int argc,
char *argv[])

{
xvobject manager;
xvobject object;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create a manager backplane to be a parent for the float object */
manager = xvw_create_manager(NULL, "parent");
xvw_set_attributes(manager,

XVW_WIDTH, 300,
XVW_HEIGHT, 100,

NULL);

/*
* Create the float object. give it a label, a default value,
* and bound it with a minimum value of 0 and a maximum value of
* 255. tack it horizontally to the parent so that it spans the
* width of the manager backplane. center it in the middle of
* the parent.

*/
object = xvw_create_float(manager, "float");
xvw_set_attributes(object,

XVW_FLOAT_LABEL, "Float Number",
XVW_FLOAT_VALUE, 123.456,
XVW_FLOAT_MINVALUE, 0.0,
XVW_FLOAT_MAXVALUE, 255.0,
XVW_TACK_EDGE, KMANAGER_TACK_HORIZ,
XVW_ABOVE, NULL,
XVW_BELOW, NULL,
NULL);

xvw_add_callback(object, XVW_FLOAT_CALLBACK, float_cb, NULL);

3-28

Xvobjects Program Services Volume III - Chapter 3

/* display & run the program */
xvf_run_form();

}

/*
* the callback for the float will be fired when the user changes the
* value of the float, either by using the scrollbar or by entering
* a value in the text parameter box & hitting <cr>. this callback simply
* prints the current value of the float.
*/

static void float_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
float value;

xvw_get_attribute(object, XVW_FLOAT_VALUE, &value);
kfprintf(kstderr, "Value = %g\n", value);

}

3-29

Xvobjects Program Services Volume III - Chapter 3

H. The Help Object

Figure 7: The help object is by all VisiQuest xvroutines to format and display help pages.

H.1. xvw_create_help() — create a help object

Synopsis
xvobject xvw_create_help(

xvobject parent,
char *name)

Input Arguments
parent

parent of the help object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

3-30

Xvobjects Program Services Volume III - Chapter 3

Returns
The help widget on success, NULL on failure

Description
The help object provides a mechanism for displaying online help pages. Online help pages providing
information corresponding to the man page of a software object are automatically generated as *.hlp
files; xvroutines will have additional help pages created from scratch, named *.doc (see Chapter 6 of
the Toolbox Programmer’s Manual for more details).

The largest part of the help object is devoted to a large, scrollable window, in which the help page is
displayed. On the top is a label for the help object; on the top right is a "Quit" button that is used to
pop down the help object; on the top left is a pulldown menu that may be used to view other online
help pages. On the bottom is a label listing the path to the help file being displayed.

The help object will format a help page that contain roff formatting commands before displaying it;
alternatively, it can be used to display plain ascii text files as is. The help object may be provided with
a path to a particular help file, or a path to a directory in which many help files exist. If the path pro-
vided is a path to a directory, the help page displayed by default will be the first one in the directory; if
the path provided is a path to a particular file, that file will be displayed. In either case, if other help
files (ie, files with names that end in ".doc" or ".hlp") will be accessable from the button on the upper
left hand corner of the help object, labelled, "More Help Pages".

The first line in a help file controls the label of the entry in the "More Help Pages" pulldown menu that
will cause that help file to be displayed. Such a line reads as follows:
.onlineHelp TOOLBOX "Label To Appear In Menu" ONAME

The word "TOOLBOX" should be replaced with the name of the toolbox, the word "ONAME" should
be replaced with the program name, and the label that you would like the user to see when they using
the "Other Files" pulldown menu should be entered instead of "Label To Appear In Menu". For exam-
ple, the first line of the online help page for the "Files" subform of editimage reads:

.onlineHelp ENVISION "Input/Output" EDITIMAGE

H.2. Attributes of the Help Object

Summary of Help Attributes

Attribute Description

3-31

Xvobjects Program Services Volume III - Chapter 3

Summary of Help Attributes

Attribute Description

XVW_HELP_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

help object that will be fired when the user clicks on the "Quit" button.

When calling xvw_add_callback(), pass this attribute directly, as in

xvw_add_callback(helpobj, XVW_HELP_CALLBACK,

help_cb, client_data);

Note that this attribute does not apply if XVW_HELP_DISPLAYQUIT is

set to FALSE.

XVW_HELP_DESTROY_ON_QUIT If FALSE, the help object will not be destroyed when the user clicks on

the "Quit" button, but will simply be unmapped.

XVW_HELP_DISPLAYICON If FALSE, this attribute will suppress creation of the help icon.

XVW_HELP_DISPLAYMENU If FALSE, this attribute will suppress creation of the options menu but-

ton.

XVW_HELP_DISPLAYQUIT If FALSE, this attribute will suppress creation of the quit button.

XVW_HELP_DISPLAYTITLE If FALSE, this attribute will suppress creation of the title.

XVW_HELP_FILENAME The name of the help file to display. Specify the full path to the help

file, using $TOOLBOX where TOOLBOX is the name of the toolbox

containing the program.

XVW_HELP_ICON_OBJECT This read-only attribute allows you to obtain the icon component of the

help object.

XVW_HELP_INTERPRET_ROFF If true, the help object will look for roff commands in the file, and call

kman to format the file if any are present. If false, the help object will

display the ascii text exactly as it is without formatting.

XVW_HELP_MENU_OBJECT This read-only attribute allows you to obtain the menubutton compo-

nent of the help object that provides access to other help files in the

directory.

XVW_HELP_MORE_FILES If FALSE, the help object will not stat the directory in order build the

list of files included in the "Other Files" submenu.

XVW_HELP_NAME This is the text that appears on the label object component that displays

the filename.

XVW_HELP_NAME_OBJECT This read-only attribute allows you to obtain the label component of the

help object that displays the filename.

XVW_HELP_PIXMAP This is the pixmap that appears to the upper left of the help object.

Candidates for the value of this attribute may be created with the use of

XCreatePixmap(); see The Xlib Reference Manual by O’Reilly and As-

sociates. Note that this attribute is mutually exclusive with

XVW_HELP_PIXMAPFILE; specify one or the other, not both.

XVW_HELP_PIXMAPFILE This is the file defining the pixmap that appears at the upper left of the

help object.

XVW_HELP_QUITLABEL This is the text that appears on the quit button of the help object

XVW_HELP_QUIT_OBJECT This read-only attribute allows you to obtain the button object compo-

nent of the help object that lets the user quit.

3-32

Xvobjects Program Services Volume III - Chapter 3

Summary of Help Attributes

Attribute Description

XVW_HELP_TEXTDISPLAY_OBJECT This read-only attribute allows you to obtain the textdisplay object

component of the help object that does the actual display of online help

text.

XVW_HELP_TITLE This is the text that appears on the label object that displays the title of

the help object.

XVW_HELP_TITLE_OBJECT This read-only attribute allows you to obtain the label component of the

help object that displays the title.

Descriptions of Help Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_HELP_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_HELP_DESTROY_ON_QUIT

(helpDestroyOnQuit)

int TRUE TRUE/FALSE

XVW_HELP_DISPLAYICON

(helpDisplaymenu)

int TRUE TRUE/FALSE

XVW_HELP_DISPLAYMENU

(helpDisplaymenu)

int TRUE TRUE/FALSE

XVW_HELP_DISPLAYQUIT

(helpDisplayquit)

int TRUE TRUE/FALSE

XVW_HELP_DISPLAYTITLE

(helpDisplaytitle)

int TRUE TRUE/FALSE

XVW_HELP_FILENAME

(N/A)

char * NULL valid help file

XVW_HELP_ICON_OBJECT

(N/A)

xvobject NULL The icon object (read-only)

XVW_HELP_INTERPRET_ROFF

(helpInterpretRoff)

int TRUE TRUE/FALSE

XVW_HELP_MENU_OBJECT

(N/A)

xvobject NULL The menubutton object (read-only)

XVW_HELP_MORE_FILES

(helpMoreFiles)

int TRUE TRUE/FALSE

XVW_HELP_NAME

(N/A)

char * "No File Currently

Being Displayed"

any printable text

XVW_HELP_NAME_OBJECT

(N/A)

xvobject NULL The label object that displays the filename

(read-only)

3-33

Xvobjects Program Services Volume III - Chapter 3

Descriptions of Help Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_HELP_PIXMAP

(N/A)

Pixmap The "help" pixmap. Valid Pixmap structure

XVW_HELP_PIXMAPFILE

(helpPixmapfile)

char * The help.xpm file

in the xvob-

jects/misc/pixmaps

directory, which

defines the "help"

pixmap.

The full path to a valid xpm or xbm file,

defining the desired pixmap. Note that the

path may contain $TOOLBOX.

XVW_HELP_QUITLABEL

(N/A)

char * "Quit" Any printable text

XVW_HELP_QUIT_OBJECT

(N/A)

xvobject NULL The button object that lets the user quit

(read-only)

XVW_HELP_TEXTDISPLAY_OBJECT

(N/A)

xvobject NULL The textdisplay object (read-only).

XVW_HELP_TITLE

(N/A)

char * "Online Help" any printable text

XVW_HELP_TITLE_OBJECT

(N/A)

xvobject NULL The label object that displays the title

(read-only)

H.3. Complete Resource Set of the Help Object

The complete resource set for the help object includes:

1. The help object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object".

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

H.4. Example using the Help Object

An example program using the help object can be found in $DESIGN/examples/xvob-
jects/help/example.c.

#include <design.h>

/*
* The program demonstrates the help object. The help object displays
* a help file which is formatted with "roff" commands. The commands
* are interpreted, and the formatted output displayed.

3-34

Xvobjects Program Services Volume III - Chapter 3

*
* % example
* displays the default help files in the "guise" help directory
*
* % example {directory}
* displays the help files in the directory specified
*
* IMPORTANT NOTE: this example will not work properly if you do not have
* groff, gtbl, and geqn installed on your system.
*
* ALSO NOTE: the help object takes a while to display. be patient.
*/

main(
int argc,
char *argv[])

{
xvobject help;
char *filename = "./Capture.doc";

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

if (argc > 1)
filename = argv[1];

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{
kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);
}

/*
* Create the help object. Note that since the parent is NULL, a
* toplevel window will be created and the text displayed
* inside. The XVW_HELP_FILENAME attribute is used to specify
* the directory in which the help file(s) exist. Note that help
* file(s) should be formatted with "roff" commands, which will be
* interpreted.
*/
help = xvw_create_help(NULL, "Online Help");
xvw_set_attributes(help,

XVW_HELP_TITLE, "Boy! You sure do need help",
XVW_HELP_FILENAME, filename,
XVW_HELP_QUITLABEL, "Quit!",
NULL);

xvw_set_attribute(help, XVW_MAXIMUM_HEIGHT, 350);

/* display & run the program. */
xvf_run_form();

}

3-35

Xvobjects Program Services Volume III - Chapter 3

I. The Info Object

Figure 8: The info object is most often used indirectly, through kinfo(), to print general information.

I.1. xvw_create_info() — create an info object

Synopsis
xvobject xvw_create_info(

xvobject parent,
char *name)

Input Arguments
parent

parent of the info object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The info object on success, NULL on failure

3-36

Xvobjects Program Services Volume III - Chapter 3

Description
The info object is a pop-up window that displays an informative message. A "nose knows" icon on the
upper left hand side of the info object draws the attention of the user; a single button on the upper right
hand side of the info object allows the user to acknowledge the information.

After the user clicks on the acknowledgment button, the info object is destroyed.

A callback can be installed on the info object, which will be fired when the user clicks on the acknowl-
edgment button.

I.2. Attributes of the Info Object

Summary of Icon Attributes

Attribute Description

XVW_INFO_BUTTON_LABEL The label of the acknowledgement button on the info object

XVW_INFO_BUTTON_OBJECT This read-only attribute allows you to obtain the the button object com-

ponent of the info object (the button used to allow the user to acknowl-

edge the message).

XVW_INFO_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

info object which will be fired when the user clicks on the acknowl-

edgement button. When calling xvw_add_callback(), pass this attribute

directly, as in

xvw_add_callback(info_obj, XVW_INFO_CALLBACK,

info_cb, client_data);

XVW_INFO_LABEL The label to be displayed on the info object.

XVW_INFO_LABEL_OBJECT This read-only attribute allows you to obtain the label object compo-

nent of the the info object (the object used to display the label).

XVW_INFO_MESSAGE The message to be displayed in the info object.

XVW_INFO_PIXMAP This is the pixmap that appears to the upper left of the info object.

Candidates for the value of this attribute may be created with the use of

XCreatePixmap(); see The Xlib Reference Manual by O’Reilly and As-

sociates. Note that this attribute is mutually exclusive with

XVW_INFO_PIXMAPFILE; specify one or the other, not both.

XVW_INFO_PIXMAPFILE This is the file defining the pixmap that appears at the upper left of the

info object.

XVW_INFO_TEXT_OBJECT This read-only attribute allows you to obtain the the text object compo-

nent of the info object (the text displaying the message).

3-37

Xvobjects Program Services Volume III - Chapter 3

Descriptions of Info Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_INFO_BUTTON_LABEL

(N/A)

char * "Ok" any printable text

XVW_INFO_BUTTON_OBJECT

(N/A)

xvobject NULL The button object (read-only)

XVW_INFO_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_INFO_LABEL

(N/A)

char * "Info:" any printable text

XVW_INFO_LABEL_OBJECT

(N/A)

xvobject NULL The label object (read-only).

XVW_INFO_MESSAGE

(N/A)

char * NULL any printable text

XVW_INFO_PIXMAP

(N/A)

Pixmap The "nose knows"

pixmap.

Valid Pixmap structure

XVW_INFO_PIXMAPFILE

(infoPixmapfile)

char * The info.xpm file

in the xvob-

jects/misc/pixmaps

directory, which

defines the "nose

knows" pixmap.

The full path to a valid xpm or xbm file,

defining the desired pixmap. Note that the

path may contain $TOOLBOX.

XVW_INFO_TEXT_OBJECT

(N/A)

xvobject NULL The text object (read-only)

I.3. Complete Resource Set of the Info Object

The complete resource set for the info object includes:

1. The info object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object".

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

3-38

Xvobjects Program Services Volume III - Chapter 3

I.4. Example using the Info Object

An example program using the info object can be found in $DESIGN/examples/xvob-
jects/info/example.c.

#include <design.h>

/*
* This example creates an info object to display information.
*
* IMPORTANT NOTE: in general, the info object should *not* be created
* directly; use of kinfo() is the conventional way to
* create messages in VisiQuest, so that there is standard
* formatting enforced. this example is really only for
* academic purposes.
*/

void main(
int argc,
char *argv[])

{
xvobject info;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* Create the info object. Note that since the parent is NULL, a
* toplevel window will be created and the info object placed
* inside. Set the label, the information message, and the button

* label.
*/
info = xvw_create_info(NULL, " ");
xvw_set_attributes(info,

XVW_INFO_MESSAGE, "When a child asks,
XVW_INFO_LABEL, "Random information below",
NULL);

/* display & run the program */
xvf_run_form();

}

3-39

Xvobjects Program Services Volume III - Chapter 3

J. The Inputfile Object

Figure 9: The InputFile GUI object provides an input file window in which the user may enter an input
filename.

J.1. xvw_create_inputfile() — create a inputfile GUI object

Synopsis
xvobject xvw_create_inputfile(

xvobject parent,
char *name)

Input Arguments
parent

parent of the inputfile object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The inputfile object on success, NULL on failure

Description
The inputfile GUI object allows the user to enter an input file. It features a text box in which the user
may type in the filename; the filename is registered when the user hits <cr>. The label of the inputfile
GUI object is really a button, which may be used to display the file browser. The file browser provides
an alternate way for input file selection.

The inputfile GUI object consists of a manager object with three children: a button object, a text object,
and a pixmap object.

A callback can be installed on the inputfile object, which will be fired when the user enters a new file-
name.

3-40

Xvobjects Program Services Volume III - Chapter 3

J.2. Attributes of the Inputfile Object

Summary of InputFile Attributes

Attribute Description

XVW_INPUTFILE_BROWSER_OBJECT This read-only attribute allows you to obtain the browser object which

is popped up when the user clicks on the button of the inputfile object.

XVW_INPUTFILE_BUTTON_OBJECT This read-only attribute allows you to obtain the button object compo-

nent of the the inputfile object.

XVW_INPUTFILE_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

inputfile object which will be fired when the user enters a new filename,

either by typing it in and pressing <cr>, or by using the browser. When

calling xvw_add_callback(), pass this attribute directly, as in

xvw_add_callback(inputfileobj, XVW_INPUTFILE_CALLBACK,

inputfile_cb, client_data);

Note that the current filename of the input file object will be passed to

the callback in the call_data. The value must be cast to a string before

use, as in:

char *filename = *((char **) call_data);

Alternatively, the filename may be obtained with XVW_INPUT-

FILE_FILENAME .

XVW_INPUTFILE_CRLABEL_OBJECT This read-only attribute allows you to obtain the pixmap object compo-

nent of the the inputfile object that indicates a "live" selection.

XVW_INPUTFILE_DISPLAY_BUTTON This attribute controls whether the browser button should be displayed

(mapped) or not. If not then the text object

XVW_INPUTFILE_FILENAME The filename which is currently displayed in the text object. This

attribute can be used to initialize the filename to be displayed in the

inputfile object, or to acquire the filename that has been entered by the

user in the text object.

XVW_INPUTFILE_LABEL This is the text that will appear in the label object component of the

inputfile object. Provide text appropriate as a title of the inputfile

object.

XVW_INPUTFILE_TEXT_OBJECT This read-only attribute allows you to obtain the text object component

of the the inputfile object.

Descriptions of InputFile Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_INPUTFILE_BROWSER_OBJECT

(N/A)

xvobject NULL The browser object (read-only).

XVW_INPUTFILE_BUTTON_OBJECT

(N/A)

xvobject NULL The button object (read-only).

3-41

Xvobjects Program Services Volume III - Chapter 3

Descriptions of InputFile Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_INPUTFILE_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_INPUTFILE_CRLABEL_OBJECT

(N/A)

xvobject NULL The pixmap object (read-only).

XVW_INPUTFILE_DISPLAY_BUTTON

(inputfileDisplayButton)

int TRUE TRUE/FALSE

XVW_INPUTFILE_FILENAME

(N/A)

char * NULL any valid input file name

XVW_INPUTFILE_LABEL

(N/A)

char * NULL any printable text

XVW_INPUTFILE_TEXT_OBJECT

(N/A)

xvobject NULL The text object (read-only).

J.3. Complete Resource Set of the InputFile Object

The complete resource set for the inputfile object includes:

1. The inputfile object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object".

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

.section 2 "Example using the InputFile Object" An example program using the inputfile object can be found
in $DESIGN/examples/xvobjects/inputfile/example.c.

#include <design.h>

/*
* This example creates a simple inputfile GUI object, which may
* be used for allowing the user to enter a input file. The user may
* enter a value in the text parameter box, or click on the label button,
* which will bring up the file browser from which a file may be picked.
*
* A callback is installed on the input file object so that when the
* user changes the value of the input file, the current
* filename is printed to the tty.
*

3-42

Xvobjects Program Services Volume III - Chapter 3

* Note that the input file object should *not* be created directly in an
* xvroutine, as use of the InputFile (-I) UIS line in the *.form file is
* both easier to use and a more standard use of the VisiQuest system.
* However, the inputfile object is provided for use with hybrid xvroutines,
* (such as this example) which do not use a "formalized" GUI as defined
* in a *.form file.
*/

static void inputfile_cb PROTO((xvobject, kaddr, kaddr));

main(
int argc,
char *argv[])

{
xvobject manager;
xvobject object;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create a manager backplane for the inputfile object */
manager = xvw_create_manager(NULL, "parent");
xvw_set_attributes(manager,

XVW_WIDTH, 300,
XVW_HEIGHT, 100,

NULL);

/*
* Create the inputfile object. give it a label.
* tack it horizontally to the parent so that it spans the
* width of the manager backplane. center it in the middle of
* the parent.

*/
object = xvw_create_inputfile(manager, "inputfile");
xvw_set_attributes(object,

XVW_INPUTFILE_LABEL, "Input File",
XVW_INPUTFILE_FILENAME, "image:ball",
XVW_TACK_EDGE, KMANAGER_TACK_HORIZ,
XVW_ABOVE, NULL,
XVW_BELOW, NULL,
NULL);

xvw_add_callback(object, XVW_INPUTFILE_CALLBACK, inputfile_cb, NULL);

/* display & run the program */
xvf_run_form();

}

/*
* the callback for the inputfile will be fired when the user changes the
* value of the input file & hits <cr>, or when they use the browser to choose
* a file. this callback simply prints the current filename.
*/

static void inputfile_cb(

3-43

Xvobjects Program Services Volume III - Chapter 3

xvobject object,
kaddr client_data,
kaddr call_data)

{
char *filename;

xvw_get_attribute(object, XVW_INPUTFILE_FILENAME, &filename);
kfprintf(kstderr, "Filename = %s\n", filename);

}

3-44

Xvobjects Program Services Volume III - Chapter 3

K. The Integer Object

Figure 10: The Integer GUI object provides an integer text and scrollbar window in which the user may
enter an integer value.

K.1. xvw_create_integer() — create an integer GUI object

Synopsis
xvobject xvw_create_integer(

xvobject parent,
char *name)

Input Arguments
parent

parent of the integer object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The integer object on success, NULL on failure

Description
The integer GUI object allows the user to enter a integer value. It features a text box in which the user
may explicitly enter the integer value; the integer value is registered when the user hits <cr>. The
integer value may be bounded by a minimum and maximum value, if desired.

A scroll bar provides an alternate way for the user to specify the integer value. The integer object con-
sists of a manager object with four children: a label object, a text object, a scrollbar, and a pixmap
object.

A callback can be installed on the integer object, which will be fired when the user enters a new integer
value.

3-45

Xvobjects Program Services Volume III - Chapter 3

K.2. Attributes of the Integer Object

Summary of Integer Attributes

Attribute Description

XVW_INTEGER_CALLBACK If desired, xvw_add_callback() may be used to install a callback may

be installed on the integer object which will be fired when the user

enters a new int value, either by typing it in and pressing <cr>, or by

using the scrollbar. When calling xvw_add_callback(), pass this

attribute directly, as in

xvw_add_callback(intobj, XVW_INTEGER_CALLBACK,

int_cb, client_data);

Note that the current value of the integer object will be passed to the

callback in the call_data. The value must be cast to an integer pointer

before use, as in:

int *value = (int *) call_data;

Alternatively, the int value may be obtained with XVW_INTE-

GER_VALUE .

XVW_INTEGER_CRLABEL_OBJECT This read-only attribute allows you to obtain the pixmap object compo-

nent of the the integer object that indicates a "live" selection.

XVW_INTEGER_INCREMENT The value to increment the scroll bar thumb.

XVW_INTEGER_LABEL This is the text that will appear in the label object component of the

integer object. Provide text appropriate as a title of the integer object.

XVW_INTEGER_LABEL_OBJECT This read-only attribute allows you to obtain the label object compo-

nent of the the integer object.

XVW_INTEGER_MAXVALUE The maximum integer value allowed. If both XVW_INTEGER_MINVALUE

and XVW_INTEGER_MAXVALUE are 0, the integer value is unbounded.

XVW_INTEGER_MINVALUE The minimum integer value allowed. If both XVW_INTEGER_MINVALUE

and XVW_INTEGER_MAXVALUE are 0.0, the integer value is unbounded.

XVW_INTEGER_SCROLLBAR_OBJECT This read-only attribute allows you to obtain the scrollbar object com-

ponent of the the integer object.

XVW_INTEGER_TEXT_OBJECT This read-only attribute allows you to obtain the text object component

of the the integer object.

XVW_INTEGER_VALUE The integer precision value which is currently displayed in the text

object. This attribute can be used to initialize the integer value to be

displayed in the text object, or to acquire a integer value that has been

entered by the user in the text object.

Descriptions of Integer Attributes

Attribute Type Default Legal
(Resource Name) Values

3-46

Xvobjects Program Services Volume III - Chapter 3

Descriptions of Integer Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_INTEGER_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_INTEGER_CRLABEL_OBJECT

(N/A)

xvobject NULL The pixmap object (read-only).

XVW_INTEGER_INCREMENT

(N/A)

int calculated using

size of scrollbar

values < (maxvalue - minvalue)/2

XVW_INTEGER_LABEL

(N/A)

char * NULL any printable text

XVW_INTEGER_LABEL_OBJECT

(N/A)

xvobject NULL The label object (read-only).

XVW_INTEGER_MAXVALUE

(N/A)

int 1.0 any integer value

XVW_INTEGER_MINVALUE

(N/A)

int 0.0 any integer value

XVW_INTEGER_SCROLLBAR_OBJECT

(N/A)

xvobject NULL The scrollbar object (read-only).

XVW_INTEGER_TEXT_OBJECT

(N/A)

xvobject NULL The text object (read-only).

XVW_INTEGER_VALUE

(N/A)

int 0.0 any integer value

K.3. Complete Resource Set of the Integer Object

The complete resource set for the integer object includes:

1. The integer object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

3-47

Xvobjects Program Services Volume III - Chapter 3

K.4. Example using the Integer Object

An example program using the integer object can be found in $DESIGN/examples/xvobjects/inte-
ger/example.c.

#include <design.h>

/*
* This example creates a simple integer GUI object, which may
* be used for allowing the user to enter a integer.
*
* A callback is installed on the integer object so that when the
* user changes the value of the integer either by entering a number
* in the text parameter box and hitting <cr> or by using the scrollbar,
* the current value is printed to the tty.
*
* Note that the integer object should *not* be created directly in an
* xvroutine, as use of the Integer (-i) UIS line in the *.form file is
* both easier to use and a more standard use of the VisiQuest system.
* However, the integer object is provided for use with hybrid xvroutines,
* (such as this example) which do not use a "formalized" GUI as defined
* in a *.form file.
*/

static void integer_cb PROTO((xvobject, kaddr, kaddr));

main(
int argc,
char *argv[])

{
xvobject manager;
xvobject object;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create a manager backplane to be a parent for the integer object */
manager = xvw_create_manager(NULL, "parent");
xvw_set_attributes(manager,

XVW_WIDTH, 300,
XVW_HEIGHT, 100,

NULL);

/*
* Create the integer object. give it a label, a default value,
* and bound it with a minimum value of 0 and a maximum value of
* 255. tack it horizontally to the parent so that it spans the
* width of the manager backplane. center it in the middle of
* the parent.

*/
object = xvw_create_integer(manager, "integer");
xvw_set_attributes(object,

XVW_INTEGER_LABEL, "Integer",

3-48

Xvobjects Program Services Volume III - Chapter 3

XVW_INTEGER_VALUE, 12,
XVW_INTEGER_MINVALUE, 0,
XVW_INTEGER_MAXVALUE, 100,
XVW_TACK_EDGE, KMANAGER_TACK_HORIZ,
XVW_ABOVE, NULL,
XVW_BELOW, NULL,
NULL);

xvw_add_callback(object, XVW_INTEGER_CALLBACK, integer_cb, NULL);

/* display & run the program */
xvf_run_form();

}

/*
* the callback for the integer will be fired when the user changes the
* value of the integer, either by using the scrollbar or by entering
* a value in the text parameter box & hitting <cr>. this callback simply
* prints the current value of the int.
*/

static void integer_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
int value;

xvw_get_attribute(object, XVW_INTEGER_VALUE, &value);
kfprintf(kstderr, "Value = %d\n", value);

}

3-49

Xvobjects Program Services Volume III - Chapter 3

L. The Layout Object

Figure 11: Here, the layout object is used to lay out multiple area objects, where each area object con-
tains a plot.

3-50

Xvobjects Program Services Volume III - Chapter 3

L.1. xvw_create_layout() — create a layout object

Synopsis
xvobject xvw_create_layout(

xvobject parent,
char *name)

Input Arguments
parent

the parent of the layout object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The layout object on success, NULL on failure

Description
The layout object is designed for doing layout of objects that are subclassed from the Manager widget.
Only objects subclassed from the manager widget (not the manager object) may be created as children
of the layout object. Such objects include area objects, image objects, zoom objects, viewport objects,
and so on. See Chapter 1, "Introduction", of the Programming Services Manual, Volume 3, for dia-
grams depicting the objects that are subclassed from the Manager widget.

The layout object allows you to do quick and easy layout when a variety of such objects share a com-
mon backplane. You may specify the number of objects that should appear in a single row; relative
layout specifications are not needed.

The layout object is especially effective when laying out objects of the same type, as it will preserve
proportionality between the objects. It is often used in applications such as xpr ism, where the user
will be interactively creating new objects to display data. The application need not implement special
code to do appropriate layout of new objects as they are created, since the layout object does it auto-
matically according to initial specifications.

L.2. Attributes of the Layout Object

Summary of Layout Attributes

Attribute Description

3-51

Xvobjects Program Services Volume III - Chapter 3

Summary of Layout Attributes

Attribute Description

XVW_LAYOUT_AREA_JUSTIFICATION This attribute indicates how to lay out the last row of area objects,

assuming that the last row has a smaller number of area objects than

any of the other rows. For example, assume that there are 3 area

objects, and XVW_NUMBER_ACROSS has been specified as 2. In this sce-

nario, the layout object will place the first two area objects in the first

row, and have a last area object to place somewhere in the second row.

The XVW_AREA_JUSTIFICATION attribute indicates where in the last

row the last area object will be placed. The following settings may be

used:

KLAYOUT_AREA_CENTER-

center the area object(s) in the last row

KLAYOUT_AREA_RIGHT-

right justify the area object(s) in the last row

KLAYOUT_AREA_LEFT-

left justify the area object(s) in the last row

KLAYOUT_AREA_FULL-

"stretch" the area object(s) to fill the last row

XVW_LAYOUT_BORDER_SIZE When the user selects one of the area object children of the the layout

object, the border of the area object will be highlighted. This attribute

specifies the line width of the highlighted border.

XVW_LAYOUT_BUFFER_SIZE This attribute specifies the distance between area objects, in pixels.

XVW_LAYOUT_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

layout object which will be fired when the user selects the layout object

by clicking on it. When calling xvw_add_callback(), pass this attribute

directly, as in

xvw_add_callback(layoutobj, XVW_LAYOUT_CALLBACK,

layout_cb, client_data);

XVW_LAYOUT_NUMBER_ACROSS This attribute specifies how many area objects will be placed on the

same row before a new row is started.

XVW_LAYOUT_SELECTED_CHILD Specifies which area object is currently selected; the selected area

object will be highlighted. The default is NULL.

Descriptions of Layout Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_LAYOUT_AREA_JUSTIFICATION

(layoutAreaJustification)

int KLAYOUT_AREA_CENTER KLAYOUT_AREA_CENTER

KLAYOUT_AREA_RIGHT

KLAYOUT_AREA_LEFT

KLAYOUT_AREA_FULL

XVW_LAYOUT_BORDER_SIZE

(layoutBorderSize)

int 2 values >= 0

3-52

Xvobjects Program Services Volume III - Chapter 3

Descriptions of Layout Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_LAYOUT_BUFFER_SIZE

(layoutBufferSize)

int 5 values >= 0

XVW_LAYOUT_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_LAYOUT_NUMBER_ACROSS

(layoutNumberAcross)

int 2 values > 0

XVW_LAYOUT_SELECTED_CHILD

(N/A)

xvobject NULL valid xvobject

L.3. Complete Resource Set of the Layout Object

The Complete Resource Set for the layout object includes:

1. The layout object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object".

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

L.4. Example using the Layout Object

An example program using the canvas object can be found in $ENVISION/examples/plot/10.lay-
out/example.c.

3-53

Xvobjects Program Services Volume III - Chapter 3

M. The NotifyWindow Object

Figure 12: The NotifyWindow GUI object provides a notification window in which to convery certain
messages to the user. The notify window can be used as a working area in which the messages can be
updated.

M.1. xvw_create_notifywindow() — create a notifywindow object

Synopsis
xvobject xvw_create_notifywindow(

xvobject parent,
char *name)

Input Arguments
parent

parent of the notifywindow object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The notifywindow object on success, NULL on failure

Description
The notifywindow object provides a convenient mechanism for the application to notify the user when
it is performing an operation that will take some time, and that the user is expected to wait patiently
until it is done.

The notifywindow object pops up without placement; it contains an icon (by default, an hourglass), a

3-54

Xvobjects Program Services Volume III - Chapter 3

label, and a message so that the application may inform the user exactly why they are waiting.

With applications that will use the notifywindow periodically, it is recommended that a single notify-
window be created for the application on startup, with XVW_NOTIFYWINDOW_VISIBLE set to
FALSE. Then, whenever necessary, the message displayed by the notifywindow can be updated using
the XVW_NOTIFYWINDOW_MESSAGE attribute, and the notifywindow object popped up using the
XVW_NOTIFYWINDOW_VISIBLE attribute. When the application is done, XVW_NOTIFYWIN-
DOW_VISIBLE can be set to FALSE again, until the next time the notifywindow object is to be
popped up.

M.2. Attributes of the NotifyWindow Object

Summary of NotifyWindow Attributes

Attribute Description

XVW_NOTIFYWINDOW_ICON_OBJECT This read-only attribute allows you to obtain the the icon object compo-

nent of the notifywindow object (the icon displays the picture of the

hourglass (or whatever you specify) on the notifywindow object). Note

that by getting the icon object with this attribute, you may then use the

XVW_ICON_PIXMAPFILE attribute with the icon object to specify

another icon; alternatively, the resource name may be used to specify

the desired pixmap in the app-defaults file, as in:

*notifywindowIconObject.iconPixmapfile: my_pixmap.xpm

XVW_NOTIFYWINDOW_LABEL The label that appears at the top of the notify window object. This is

usually a generalized label such as "Working..." or some other string to

indicate that the program is busy.

XVW_NOTIFYWINDOW_LABEL_OBJECT This read-only attribute allows you to obtain the label object compo-

nent of the the notifywindow object (the object used to display the

label).

XVW_NOTIFYWINDOW_MESSAGE This is the message that appears in the notify window while it is dis-

played; users are expected to read it while they are waiting for the

notify window to go away. The message is typically used to indicate

what the program is doing that is forcing the user to wait. With pro-

grams such as craftsman, for example, the message might inform the

user that a new toolbox or a new software object is being created.

XVW_NOTIFYWINDOW_NOTIFYFOR The XVW_NOTIFYWINDOW_NOTIFYFOR attribute is used to specify the

object for which the notify window appears. Typically, this is the appli-

cation’s toplevel object. When a notify window is made "visible", the

notify window will be centered around the specified object. If this field

is not specified, then the notify window will be placed according to the

location of the user’s pointer.

3-55

Xvobjects Program Services Volume III - Chapter 3

Summary of NotifyWindow Attributes

Attribute Description

XVW_NOTIFYWINDOW_PIXMAP This is the pixmap that appears in the notify window object. Candi-

dates for the value of this attribute may be created with the use of

XCreatePixmap(); see The Xlib Reference Manual by O’Reilly and As-

sociates. Note that this attribute is mutually exclusive with XVW_NOTI-

FYWINDOW_PIXMAPFILE; specify one or the other, not both.

XVW_NOTIFYWINDOW_PIXMAPFILE This is the file defining the pixmap that appears in the notify window.

XVW_NOTIFYWINDOW_TEXT_OBJECT This read-only attribute allows you to obtain the text object component

of the the notifywindow object (the object used to display the message

that the user reads while they are waiting for the notifywindow to go

aw ay).

XVW_NOTIFYWINDOW_TITLE The title that appears in the titlebar of the notify window object. Typi-

cally, this is the name of the application using the notify window. This

title is only used if the user’s window manager applies a window dress-

ing to transient windows.

XVW_NOTIFYWINDOW_VISIBLE Defines whether or not the notify window should be actively displayed.

If the XVW_NOTIFYWINDOW_VISIBLE attribute is FALSE, then the

notify window will be unmapped from the screen. If TRUE then the

notify window will be placed centered according to the XVW_NOTIFY-

WINDOW_VISIBLE attribute.

Descriptions of NotifyWindow Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_NOTIFYWINDOW_ICON_OBJECT

(N/A)

xvobject NULL The icon object (read-only).

XVW_NOTIFYWINDOW_LABEL

(notifywindowLabel)

char * NULL any printable text

XVW_NOTIFYWINDOW_LABEL_OBJECT

(N/A)

xvobject NULL The label object (read-only).

XVW_NOTIFYWINDOW_MESSAGE

(N/A)

char * NULL any printable text.

XVW_NOTIFYWINDOW_NOTIFYFOR

(N/A)

xvobject NULL Toplevel object of calling application.

XVW_NOTIFYWINDOW_PIXMAP

(N/A)

Pixmap The "hourglass"

pixmap

Valid Pixmap structure

XVW_NOTIFYWINDOW_PIXMAPFILE

(notifywindowPixmapfile)

char * The hourglass.xbm

file in the xvob-

jects/misc/pixmaps

directory, which

defines the "hour-

glass" pixmap.

The full path to a valid xpm or xbm file,

defining the desired pixmap. Note that the

path may contain $TOOLBOX.

3-56

Xvobjects Program Services Volume III - Chapter 3

Descriptions of NotifyWindow Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_NOTIFYWINDOW_TEXT_OBJECT

(N/A)

xvobject NULL The text object (read-only).

XVW_NOTIFYWINDOW_TITLE

(notifywindowTitle)

char * NULL any printable text.

XVW_NOTIFYWINDOW_VISIBLE

(N/A)

int FALSE TRUE/FALSE

M.3. Complete Resource Set of the NotifyWindow Object

The complete resource set for the notifywindow object includes:

1. The notifywindow object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

.section 2 "Example using the NotifyWindow Object"

An example program using the notifywindow object can be found in $DESIGN/examples/xvob-
jects/notify/example.c.

#include <design.h>

/*
* This example demonstrates the use of the notifywindow object.
* Notifywindows are nice when an application has to do something that
* will take a while, and the developer wants to inform the user about
* what’s happening. They don’t require acknowledgement; they just
* pop up to say something while the program is working, and go away
* when the program is done doing whatever it’s doing.
*/

static void button_cb PROTO((xvobject, kaddr, kaddr));
static void quit_cb PROTO((xvobject, kaddr, kaddr));

main(
int argc,
char *argv[])

{
xvobject manager;

xvobject button;
xvobject quit;
xvobject notifywindow;

3-57

Xvobjects Program Services Volume III - Chapter 3

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create a manager object backplane for a button */
manager = xvw_create_manager(NULL, "manager");
xvw_set_attributes(manager,

XVW_WIDTH, 200,
XVW_HEIGHT, 200,

NULL);

/*
* create a yellow button in the middle of the manager;

* install a callback which will display the notifier.
*/
button = xvw_create_button(manager, "button");
xvw_set_attributes(button,

XVW_LABEL, "Press Me",
XVW_BACKGROUND_COLOR, "yellow",
XVW_LEFT_OF, NULL,
XVW_RIGHT_OF, NULL,
XVW_ABOVE, NULL,
XVW_BELOW, NULL,
NULL);

/* create a quit button, just to be fancy. */
quit = xvw_create_button(manager, "quit");

xvw_set_attributes(quit,
XVW_LABEL, "quit",
XVW_LEFT_OF, NULL,
XVW_BELOW, NULL,
NULL);

/*
* Create the notify window object. Since the parent is NULL, a
* toplevel window will be created and the notifywindow placed
* inside. Give the notify window a title and a message.

*
* The XVW_NOTIFYWINDOW_VISIBLE attribute is used when an application
* will be repeatedly using a notify window; you don’t want to
* recreate it every time (since that’s slow), so you just create it
* the first time, and then set the XVW_NOTIFYWINDOW_VISIBLE to
* FALSE after it’s done, and back to TRUE again when putting
* up a new message.

*/
notifywindow = xvw_create_notifywindow(NULL, "notify");
xvw_set_attributes(notifywindow,

XVW_NOTIFYWINDOW_VISIBLE, FALSE,
XVW_NOTIFYWINDOW_TITLE, "Please Wait. . .",
NULL);

/*
* add callback to button to display notifywindow. pass

* notifywindow as clientdata so we can use it inside the callback.

3-58

Xvobjects Program Services Volume III - Chapter 3

*/
xvw_add_callback(button, XVW_BUTTON_SELECT,

button_cb, notifywindow);

/*
* add callback to button to quit. pass notifywindow as clientdata

* so we can destroy it inside the callback.
*/
xvw_add_callback(quit, XVW_BUTTON_SELECT,

quit_cb, notifywindow);

/* display and run the program. */
xvf_run_form();

}

/*
* callback to display notify window
*/

static void button_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
int indx;
static int count = 0;
xvobject notifywindow = (xvobject) client_data;

static char *messages[] = {
"Initializing program...",
"the weather is here - wish you were beautiful",
"all in a day’s work",
"isn’t this fun",
"notifywindows are great"};

indx = count % (knumber(messages));
xvw_set_attributes(notifywindow,

XVW_NOTIFYWINDOW_MESSAGE, messages[indx],
XVW_NOTIFYWINDOW_VISIBLE, TRUE,
NULL);

sleep(10);

xvw_set_attribute(notifywindow, XVW_NOTIFYWINDOW_VISIBLE, FALSE);

count++;
}

/*
* callback to quit
*/

static void quit_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
xvobject notifywindow = (xvobject) client_data;

xvw_destroy(notifywindow);
kexit(KEXIT_SUCCESS);

}

3-59

Xvobjects Program Services Volume III - Chapter 3

N. The Outputfile Object

Figure 13: The OutputFile GUI object provides an output file window in which the user may enter an out-
put filename.

N.1. xvw_create_outputfile() — create a outputfile GUI object

Synopsis
xvobject xvw_create_outputfile(

xvobject parent,
char *name)

Input Arguments
parent

parent of the outputfile widget; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The outputfile object on success, NULL on failure

Description
The outputfile GUI object allows the user to enter an output file. It features a text box in which the
user may type in the filename; the filename is registered when the user hits <cr>. The label of the out-
putfile GUI object is really a button, which may be used to display the file browser. The file browser
provides an alternate way for output file selection.

The outputfile GUI object consists of a manager object with three children: a button object, a text
object, and a pixmap object.

A callback can be installed on the outputfile object, which will be fired when the user enters a new file-
name.

3-60

Xvobjects Program Services Volume III - Chapter 3

N.2. Attributes of the OutputFile Object

Summary of OutputFile Attributes

Attribute Description

XVW_OUTPUTFILE_BROWSER_OBJECT This read-only attribute allows you to obtain the browser object which

is popped up when the user clicks on the button of the outputfile object.

XVW_OUTPUTFILE_BUTTON_OBJECT This read-only attribute allows you to obtain the button object compo-

nent of the the outputfile object.

XVW_OUTPUTFILE_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

outputfile object which will be fired when the user enters a new file-

name, either by typing it in and pressing <cr>, or by using the browser.

When calling xvw_add_callback(), pass this attribute directly, as in

xvw_add_callback(outputfileobj, XVW_OUTPUTFILE_CALLBACK,

outputfile_cb, client_data);

Note that the current filename of the output file object will be passed to

the callback in the call_data. The value must be cast to a string before

use, as in:

char *filename = *((char **) call_data);

Alternatively, the filename may be obtained with XVW_OUTPUT-

FILE_FILENAME .

XVW_OUTPUTFILE_CRLABEL_OBJECT This read-only attribute allows you to obtain the pixmap object compo-

nent of the the outputfile object that indicates a "live" selection.

XVW_OUTPUTFILE_DISPLAY_BUTTON This attribute controls whether the browser button should be displayed

(mapped) or not. If not then the text object

XVW_OUTPUTFILE_FILENAME The filename which is currently displayed in the text object. This

attribute can be used to initialize the filename to be displayed in the

outputfile object, or to acquire the filename that has been entered by the

user in the text object.

XVW_OUTPUTFILE_LABEL This is the text that will appear in the label object component of the

outputfile object. Provide text appropriate as a title of the outputfile

object.

XVW_OUTPUTFILE_TEXT_OBJECT This read-only attribute allows you to obtain the text object component

of the the outputfile object.

Descriptions of OutputFile Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_OUTPUTFILE_BROWSER_OBJECT

(N/A)

xvobject NULL The browser object (read-only).

XVW_OUTPUTFILE_BUTTON_OBJECT

(N/A)

xvobject NULL The button object (read-only).

3-61

Xvobjects Program Services Volume III - Chapter 3

Descriptions of OutputFile Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_OUTPUTFILE_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_OUTPUTFILE_CRLABEL_OBJECT

(N/A)

xvobject NULL The pixmap object (read-only).

XVW_OUTPUTFILE_DISPLAY_BUTTON

(outputfileDisplayButton)

int TRUE TRUE/FALSE

XVW_OUTPUTFILE_FILENAME

(N/A)

char * NULL any valid output file name

XVW_OUTPUTFILE_LABEL

(N/A)

char * NULL any printable text

XVW_OUTPUTFILE_TEXT_OBJECT

(N/A)

xvobject NULL The text object (read-only).

N.3. Complete Resource Set of the OutputFile Object

The complete resource set for the outputfile object includes:

1. The outputfile object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

N.4. Example using the OutputFile Object

An example program using the outputfile object can be found in $DESIGN/examples/xvob-
jects/outputfile/example.c.

#include <design.h>

/*
* This example creates a simple outputfile GUI object, which may
* be used for allowing the user to enter a output file. The user may
* enter a value in the text parameter box, or click on the label button,
* which will bring up the file browser from which a file may be picked.
*
* A callback is installed on the output file object so that when the

3-62

Xvobjects Program Services Volume III - Chapter 3

* user changes the value of the output file, the current
* filename is printed to the tty.
*
* Note that the output file object should *not* be created directly in an
* xvroutine, as use of the OutputFile (-O) UIS line in the *.form file is
* both easier to use and a more standard use of the VisiQuest system.
* However, the outputfile object is provided for use with hybrid xvroutines,
* (such as this example) which do not use a "formalized" GUI as defined
* in a *.form file.
*/

static void outputfile_cb PROTO((xvobject, kaddr, kaddr));

main(
int argc,
char *argv[])

{
xvobject manager;
xvobject object;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create a manager to be a parent for the outputfile object */
manager = xvw_create_manager(NULL, "parent");
xvw_set_attributes(manager,

XVW_WIDTH, 300,
XVW_HEIGHT, 100,

NULL);

/*
* Create the outputfile object. give it a label.
* tack it horizontally to the parent so that it spans the
* width of the manager backplane. center it in the middle of
* the parent.

*/
object = xvw_create_outputfile(manager, "outputfile");
xvw_set_attributes(object,

XVW_OUTPUTFILE_LABEL, "Output File",
XVW_OUTPUTFILE_FILENAME, "lulu",
XVW_TACK_EDGE, KMANAGER_TACK_HORIZ,
XVW_ABOVE, NULL,
XVW_BELOW, NULL,
NULL);

xvw_add_callback(object, XVW_OUTPUTFILE_CALLBACK,
outputfile_cb, NULL);

/* display & run the program */
xvf_run_form();

}

/*

3-63

Xvobjects Program Services Volume III - Chapter 3

* the callback for the outputfile will be fired when the user changes the
* value of the output file & hits <cr>, or when they choose a file using
* the browser. this callback simply prints the current filename.
*/

static void outputfile_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
char *filename;

xvw_get_attribute(object, XVW_OUTPUTFILE_FILENAME, &filename);
kfprintf(kstderr, "Filename = %s\n", filename);

}

3-64

Xvobjects Program Services Volume III - Chapter 3

O. The TextDisplay Object

Figure 14: The upper portion of the textdisplay object, displaying the output of the man page for
xvw_create_textdisplay(). Note that the output of the manpage contains the control characters produced
by groff, and the textdisplay object correctly interprets the control characters as bold.

O.1. xvw_create_textdisplay() — create a textdisplay object

Synopsis
xvobject xvw_create_textdisplay(

xvobject parent,

3-65

Xvobjects Program Services Volume III - Chapter 3

char *name)

Input Arguments
parent

parent of the textdisplay object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The textdisplay object on success, NULL on failure

Description
The textdisplay object supports display of text files.

For files that were output from roff interpreters, the textdisplay object will format the text as specified
by the control characters produced by the roff interpreter. In other words, the textdisplay object cannot
format files with roff commands still in them; rather, it supports display of files that were output by a
roff interpreter such as nroff or groff, after such a program was already run on the file with the roff com-
mands in it.

Of course, the textdisplay object also supports display of plain ascii text files.

The textdisplay object supports specification of five different fonts, the roman font that is used with
"normal" text, as well as bold, italic, and helvetica fonts for emphasis and a symbol font for use with
equations.

The textdisplay object can also be used to support hypertext-type functionality. The textdisplay object
is capable of keeping a special list of words that might appear in the text; such "special" words will
appear in a different color from the rest of the text. A callback can be installed on the textdisplay
object which will be fired when the user clicks on a word that is part of the textdisplay list of "special"
words. Thus, the application can use this capability to display a new text file determined by the word
selected by the user.

O.2. Attributes of the TextDisplay Object

Summary of TextDisplay Attributes

Attribute Description

XVW_TEXTDISPLAY_ADDTEXT This action attribute adds text to the text display. The text is appended

to the existing list of text and is appropriately displayed after being

compiled. The text passed via the action attribute is duplicated.

3-66

Xvobjects Program Services Volume III - Chapter 3

Summary of TextDisplay Attributes

Attribute Description

XVW_TEXTDISPLAY_ASCII The XFontStruct structure defining the Ascii font to be used with "nor-

mal" text appearing in the text display object. The XFontStruct value

for setting this attribute can be obtained with XLoadQueryFont(); a list

of XFontStruct candidates may be obtained with XListFontsWithInfo().

For more information on these Xlib routines, see Section 6.2 of The

Xlib Programming Manual by Adrian Nye. Note that this attribute is

mutually exclusive with XVW_TEXTDISPLAY_ASCII_FONTNAME; use

one or the other, not both.

XVW_TEXTDISPLAY_ASCII_FONTNAME This attribute specifies the name of the Ascii font to be used with "nor-

mal" text appearing in the text display object.

XVW_TEXTDISPLAY_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

text display object that will be fired when the user clicks on a particular

word that appears in the text being displayed.

When calling xvw_add_callback(), pass this attribute directly, as in

xvw_add_callback(textdisplayobj, XVW_TEXTDISPLAY_CALLBACK,

textdisplay_cb, client_data);

When this callback attribute is used, either the XVW_TEXTDIS-

PLAY_WORDCOLOR or the XVW_TEXTDISPLAY_WORDPIXEL attribute

should be used to set the color of the word to something other than the

rest of the text. This will indicate to the user that they can click on the

word to make something happen (what will happen is, of course, deter-

mined by the callback).

In addition, it is also good to set either the XVW_TEXTDISPLAY_HIGH-

LIGHTCOLOR or the XVW_TEXTDISPLAY_HIGHLIGHTPIXEL attribute to

specify the color in which the word will appear when it is actually

clicked on.

Note that the word that the user clicked on will be passed as a string in

the call_data; to access the string inside the callback, it must first cast

to a string, as in: char *word = (char *) calldata

XVW_TEXTDISPLAY_CLEARTEXT This action attribute deletes all text from the text display. All text will

be deleted from the text display list, which will result in the text display

defaulting to it’s initial state.

XVW_TEXTDISPLAY_FILE This is the open stream to the file to be displayed in the text display

object. Note that this attribute is mutually exclusive with

XVW_TEXTDISPLAY_FILENAME; use one or the other, not both.

XVW_TEXTDISPLAY_FILENAME This is the name of the file to be displayed in the display object.

XVW_TEXTDISPLAY_GETTEXT This action attribute gets text from the text display. The text passed

back is not duplicated and should not be changed.

XVW_TEXTDISPLAY_INDENT The number of pixels to indent into the text display object before print-

ing text.

3-67

Xvobjects Program Services Volume III - Chapter 3

Summary of TextDisplay Attributes

Attribute Description

XVW_TEXTDISPLAY_ROFF If the file to appear in the text display object has roff formatting com-

mands, setting this attribute to TRUE will cause those formatting com-

mands to be interpreted and the text formatted as specified. If FALSE,

the file to be displayed is considered to be a plain ascii text file, and the

text is displayed exactly as it appears in the file.

XVW_TEXTDISPLAY_ROMAN The XFontStruct structure defining the Roman font to be used with

"normal" text appearing in the text display object. The XFontStruct

value for setting this attribute can be obtained with XLoadQueryFont();

a list of XFontStruct candidates may be obtained with XListFontsWith-

Info(). For more information on these Xlib routines, see Section 6.2 of

The Xlib Programming Manual by Adrian Nye. Note that this attribute

is mutually exclusive with XVW_TEXTDISPLAY_ROMAN_FONTNAME; use

one or the other, not both.

XVW_TEXTDISPLAY_ROMAN_FONTNAME This attribute specifies the name of the Roman font to be used with

"normal" text appearing in the text display object.

Descriptions of TextDisplay Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_TEXTDISPLAY_ADDTEXT

(N/A)

char * N/A Any multiline text which is displayable

XVW_TEXTDISPLAY_ASCII

(N/A)

XFontStruct see description see description

XVW_TEXTDISPLAY_ASCII_FONTNAME

(textdisplayAsciiFontname)

char * see description see description

XVW_TEXTDISPLAY_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_TEXTDISPLAY_CLEARTEXT

(N/A)

int N/A TRUE

XVW_TEXTDISPLAY_FILE

(N/A)

kfile NULL A kfile pointer returned by kfopen() or

another VisiQuest open data transport rou-

tine

XVW_TEXTDISPLAY_FILENAME

(textdisplayFilename)

char * NULL valid name of input file

XVW_TEXTDISPLAY_GETTEXT

(N/A)

char * N/A N/A

3-68

Xvobjects Program Services Volume III - Chapter 3

Descriptions of TextDisplay Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_TEXTDISPLAY_INDENT

(textdisplayIndent)

int 10 values > 0

XVW_TEXTDISPLAY_ROFF

(textdisplayRoff)

int TRUE TRUE/FALSE

XVW_TEXTDISPLAY_ROMAN

(N/A)

XFontStruct see description see description

XVW_TEXTDISPLAY_ROMAN_FONTNAME

(textdisplayRomanFontname)

char * see description see description

O.3. Complete Resource Set of the Textdisplay Object

The complete resource set for the textdisplay object includes:

1. The textdisplay object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

O.4. Example using the Textdisplay Object

An example program using the textdisplay object can be found in $DESIGN/examples/xvob-
jects/textdisplay/example.c.

#include <design.h>

/*
* This example shows how the textdisplay object is used to display
* a text file. If the file is formatted with "roff" commands, those
* commands will be interpreted, and the file formatted as specified.
*/

static void quit_cb PROTO((xvobject, kaddr, kaddr));

xvobject text;
xvobject back;
xvobject label;

void main(
int argc,
char **argv)

{

3-69

Xvobjects Program Services Volume III - Chapter 3

xvobject quit;
float width;
char *title;
char *filename = "./test_file";
kfile *file;
kobject current;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "example", "Cannot open display");
kexit(KEXIT_FAILURE);

}

/* create the manager backplane object */
back = xvw_create_manager(NULL, "Text Display");
xvw_set_attributes(back,

XVW_PREFERRED_WIDTH, 250, /* set width */
XVW_PREFERRED_HEIGHT, 400, /* set height */

NULL);

/* create the label object */
title = kstring_cat("Viewing File: ", filename, NULL);
width = (float) (kstrlen(title)) +1.0;
label = xvw_create_label(back, "label");
xvw_set_attributes(label,

XVW_LABEL, title,
XVW_CHAR_WIDTH, 20.0,
XVW_BELOW, NULL,
XVW_RIGHT_OF, NULL,
XVW_LEFT_OF, NULL,
NULL);

/* create the quit button */
quit = xvw_create_button(back, "quit");
xvw_set_attributes(quit,

XVW_LABEL, "Quit", /* button label */
XVW_LEFT_OF, NULL, /* upper R corner */
XVW_BELOW, NULL, /* upper R corner */
XVW_CHAR_HEIGHT, 1.0, /* set height */
NULL);

file = kfopen(filename, "r");
if (file == NULL)
{

kerror(NULL, "get_image_info",
"Can’t open file %s", filename);

return;
}

/* create the textdisplay object; it will display the test file */
text = xvw_create_textdisplay(back, "test_display");
xvw_set_attributes(text,

3-70

Xvobjects Program Services Volume III - Chapter 3

XVW_BELOW, quit,
XVW_TEXTDISPLAY_FILE, file, /* set filename */

XVW_TACK_EDGE, KMANAGER_TACK_ALL,
NULL);

kfclose(file);

/* add event handler to quit when they hit the quit button */
xvw_add_callback(quit, XVW_BUTTON_SELECT, quit_cb, NULL);

/* quit the program if they use the window manager to delete window */
xvw_add_protocol(back, "WM_DELETE_WINDOW",

(void (*)(xvobject, kaddr))quit_cb, NULL);

/* display & run program */
xvf_run_form();

}

static void quit_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{

xvw_remove_protocol(back, "WM_DELETE_WINDOW",
(void (*)(xvobject, kaddr))quit_cb, NULL);

xvw_unmap(back);
xvw_destroy(back);

kexit(KEXIT_SUCCESS);

}

3-71

Xvobjects Program Services Volume III - Chapter 3

P. The TextInput Object

Figure 15: The TextInput GUI object provides an text input window in which the user may enter an text
string.

P.1. xvw_create_textinput() — create a textinput object

Synopsis
xvobject xvw_create_textinput(

xvobject parent,
char *name)

Input Arguments
parent

parent of the textinput object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The textinput object on success, NULL on failure

Description
The textinput GUI object allows the user to enter a string of arbitrary length. It features a text box in
which the user may enter the string; the string is registered when the user hits <cr>.

A callback can be installed on the textinput object, which will be fired when the user enters a new
string.

3-72

Xvobjects Program Services Volume III - Chapter 3

P.2. Attributes of the TextInput Object

Summary of TextInput Attributes

Attribute Description

XVW_TEXTINPUT_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

textinput object which will be fired when the user enters new text and

presses <cr>. When calling xvw_add_callback(), pass this attribute

directly, as in

xvw_add_callback(textinputobj, XVW_TEXTINPUT_CALLBACK,

textinput_cb, client_data);

Note that the current text appearing in the textinput object will be

passed to the callback in the call_data. The value must be cast to a

string before use, as in:

char *string = *((char **) call_data);

Alternatively, the filename may be obtained with XVW_TEXTIN-

PUT_TEXT .

XVW_TEXTINPUT_CRLABEL_OBJECT This read-only attribute allows you to obtain the pixmap object compo-

nent of the the textinput object that indicates a "live" selection.

XVW_TEXTINPUT_LABEL This is the label that appears on the label object component of the tex-

tinput object.

XVW_TEXTINPUT_LABEL_OBJECT This read-only attribute allows you to obtain the label object compo-

nent of the the textinput object.

XVW_TEXTINPUT_TEXT This is the text that appears in the textinput object.

XVW_TEXTINPUT_TEXT_OBJECT This read-only attribute allows you to obtain the text object component

of the the textinput object.

Descriptions of TextInput Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_TEXTINPUT_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_TEXTINPUT_CRLABEL_OBJECT

(N/A)

xvobject NULL The pixmap object (read-only).

XVW_TEXTINPUT_LABEL

(N/A)

char *

XVW_TEXTINPUT_LABEL_OBJECT

(N/A)

xvobject NULL The label object (read-only).

3-73

Xvobjects Program Services Volume III - Chapter 3

Descriptions of TextInput Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_TEXTINPUT_TEXT

(N/A)

char * NULL any printable text

XVW_TEXTINPUT_TEXT_OBJECT

(N/A)

xvobject NULL The text object (read-only).

P.3. Complete Resource Set of the TextInput Object

The complete resource set for the textinput object includes:

1. The textinput object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

.section 2 "Example using the TextInput Object" An example program using the textinput object can be found
in $DESIGN/examples/xvobjects/textinput/example.c.

#include <design.h>

/*
* This example creates a simple textinput GUI object, which may
* be used for allowing the user to enter text.
*
* A callback is installed on the textinput object so that when the
* user changes the text, the current text is printed to the tty.
*
* Note that the textinput object should *not* be created directly in an
* xvroutine, as use of the String (-s) UIS line in the *.form file is
* both easier to use and a more standard use of the VisiQuest system.
* However, the textinput object is provided for use with hybrid xvroutines,
* (such as this example) which do not use a "formalized" GUI as defined
* in a *.form file.
*/

static void textinput_cb PROTO((xvobject, kaddr, kaddr));

main(
int argc,
char *argv[])

{
xvobject manager;
xvobject object;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

3-74

Xvobjects Program Services Volume III - Chapter 3

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create a manager backplane */
manager = xvw_create_manager(NULL, "parent");
xvw_set_attributes(manager,

XVW_WIDTH, 300,
XVW_HEIGHT, 100,

NULL);

/*
* Create the textinput object. give it a label.
* tack it horizontally to the parent so that it spans the
* width of the manager backplane. center it in the middle of
* the parent.

*/
object = xvw_create_textinput(manager, "textinput");
xvw_set_attributes(object,

XVW_TEXTINPUT_LABEL, "Sample Text",
XVW_TEXTINPUT_TEXT, "here is the exciting text",
XVW_TACK_EDGE, KMANAGER_TACK_HORIZ,
XVW_ABOVE, NULL,
XVW_BELOW, NULL,
NULL);

xvw_add_callback(object, XVW_TEXTINPUT_CALLBACK, textinput_cb, NULL);

/* display & run the program */
xvf_run_form();

}

/*
* the callback for the textinput will be fired when the user changes the
* value of the text & hits <cr>. this callback simply prints the text.
*/

static void textinput_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
char *text;

xvw_get_attribute(object, XVW_TEXTINPUT_TEXT, &text);
kfprintf(kstderr, "Text reads as follows:\n%s\n", text);

}

3-75

Xvobjects Program Services Volume III - Chapter 3

Q. The Warn Object

Figure 16: The warn object is most often used indirectly, through kwarn(), to print warning messages.

Q.1. xvw_create_warn() — create a warning object

Synopsis
xvobject xvw_create_warn(

xvobject parent,
char *name)

Input Arguments
parent

parent of the warn object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the object (for use in app-defaults files, etc)

Returns
The warn widget on success, NULL on failure

3-76

Xvobjects Program Services Volume III - Chapter 3

Description
Creates a warning object. The warning object is a pop-up window that displays a warning message. A
warn icon on the upper left hand side of the warning object draws the attention of the user; a single
button on the upper right hand side of the warning object allows the user to acknowledge the warning.

After the user clicks on the acknowledgment button, the warning object is destroyed.

A callback can be installed on the warning object, which will be fired when the user clicks on the
acknowledgment button.

Q.2. Attributes of the Warn Object

Summary of Warn Attributes

Attribute Description

XVW_WARN_BUTTON_LABEL The label for the acknowledgment button.

XVW_WARN_BUTTON_OBJECT This read-only attribute allows you to obtain the the button object com-

ponent of the warn object (the button used to allow the user to acknowl-

edge the warning message).

XVW_WARN_CALLBACK If desired, xvw_add_callback() may be used to install a callback on the

warn object which will be fired when the user clicks on the acknowl-

edgement button. When calling xvw_add_callback(), pass this attribute

directly, as in

xvw_add_callback(warnobj, XVW_WARN_CALLBACK,

warn_cb, client_data);

XVW_WARN_LABEL The label for the warn object.

XVW_WARN_LABEL_OBJECT This read-only attribute allows you to obtain the label object compo-

nent of the warn object (the object used to display the label).

XVW_WARN_MESSAGE The error message to be displayed in the error object.

XVW_WARN_PIXMAP This is the pixmap that appears to the upper left of the warn object.

Candidates for the value of this attribute may be created with the use of

XCreatePixmap(); see The Xlib Reference Manual by O’Reilly and As-

sociates. Note that this attribute is mutually exclusive with

XVW_WARN_PIXMAPFILE; specify one or the other, not both.

XVW_WARN_PIXMAPFILE This is the file defining the pixmap that appears at the upper left of the

warn object.

XVW_WARN_TEXT_OBJECT This read-only attribute allows you to obtain the the text object compo-

nent of the warn object (the text displaying the warning message).

3-77

Xvobjects Program Services Volume III - Chapter 3

Descriptions of Warn Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_WARN_BUTTON_LABEL

(N/A)

char * "Ok" any printable text

XVW_WARN_BUTTON_OBJECT

(N/A)

xvobject NULL The button object (read-only).

XVW_WARN_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_WARN_LABEL

(N/A)

char * NULL any printable text

XVW_WARN_LABEL_OBJECT

(N/A)

xvobject NULL The label object (read-only).

XVW_WARN_MESSAGE

(N/A)

char * NULL any printable text

XVW_WARN_PIXMAP

(N/A)

Pixmap The "caution"

pixmap.

Valid Pixmap structure

XVW_WARN_PIXMAPFILE

(warnPixmapfile)

char * The caution.xpm

file in the xvob-

jects/misc/pixmaps

directory, which

defines the "cau-

tion" pixmap.

The full path to a valid xpm or xbm file,

defining the desired pixmap. Note that the

path may contain $TOOLBOX.

XVW_WARN_TEXT_OBJECT

(N/A)

xvobject NULL The text object (read-only).

Q.3. Complete Resource Set of the Warn Object

The complete resource set for the warn object includes:

1. The warn object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3,"The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

3-78

Xvobjects Program Services Volume III - Chapter 3

Q.4. Example using the Warn Object

An example program using the warn object can be found in $DESIGN/examples/xvob-
jects/warn/example.c.

#include <design.h>

/*
* This example creates a warn object to display a warninig message.
*
* IMPORTANT NOTE: in general, the warn object should *not* be created
* directly; use of kwarn() is the conventional way to
* create messages in VisiQuest, so that there is standard
* formatting enforced. this example is really only for
* academic purposes.
*/

void main(
int argc,
char *argv[])

{
xvobject warn;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* Create the warn object. Note that since the parent is NULL, a
* toplevel window will be created and the warn object placed
* inside. Set the label, the warning message, the button label.
*/
warn = xvw_create_warn(NULL, "Warning Message");
xvw_set_attributes(warn,

XVW_WARN_LABEL, "Beeeep! Beeeep! Beeep!",
XVW_WARN_MESSAGE, "You better watch out...",
NULL);

/* display & run the program */
xvf_run_form();

}

3-79

Xvobjects Program Services Volume III - Chapter 3

This page left intentionally blank

3-80

Table of Contents

A. Introduction . 3-1
B. The Browser Object . 3-2

B.1. xvw_create_browser() — create a browser GUI object 3-2
B.2. Attributes of the Browser Object . 3-3
B.3. Complete Resource Set of the Browser Manager Object 3-5
B.4. Example using the Browser Object 3-5

C. The Canvas Object . 3-7
C.1. xvw_create_canvas() — create a canvas object 3-7
C.2. Attributes of the Canvas Manager Object 3-8
C.3. Complete Resource Set of the Canvas Manager Object 3-10
C.4. Example using the Canvas Object . 3-10

D. The Connection Object . 3-13
D.1. xvw_create_connection() — create a connection object 3-13
D.2. Attributes of the Connection Object 3-14
D.3. Complete Resource Set of the Connection Object 3-14

E. The Double Object . 3-16
E.1. xvw_create_double() — creates a double object 3-16
E.2. Attributes of the Double Object . 3-17
E.3. Complete Resource Set of the Double Object 3-18

F. The Error Object . 3-21
F.1. xvw_create_error() — create an error object 3-21
F.2. Attributes of the Error Object . 3-22
F.3. Complete Resource Set of the Error Object 3-23

G. The Float Object . 3-25
G.1. xvw_create_float() — create a float object 3-25
G.2. Attributes of the Float Object . 3-26
G.3. Complete Resource Set of the Float Object 3-27

H. The Help Object . 3-30
H.1. xvw_create_help() — create a help object 3-30
H.2. Attributes of the Help Object . 3-31
H.3. Complete Resource Set of the Help Object 3-34
H.4. Example using the Help Object . 3-34

I. The Info Object . 3-36
I.1. xvw_create_info() — create an info object 3-36
I.2. Attributes of the Info Object . 3-37
I.3. Complete Resource Set of the Info Object 3-38
I.4. Example using the Info Object . 3-39

J. The Inputfile Object . 3-40
J.1. xvw_create_inputfile() — create a inputfile GUI object 3-40
J.2. Attributes of the Inputfile Object . 3-41
J.3. Complete Resource Set of the InputFile Object 3-42

K. The Integer Object . 3-45
K.1. xvw_create_integer() — create an integer GUI object 3-45
K.2. Attributes of the Integer Object . 3-46
K.3. Complete Resource Set of the Integer Object 3-47
K.4. Example using the Integer Object . 3-48

L. The Layout Object . 3-50

- i -

Xvobjects Program Services Volume III - Chapter 3

L.1. xvw_create_layout() — create a layout object 3-51
L.2. Attributes of the Layout Object . 3-51
L.3. Complete Resource Set of the Layout Object 3-53
L.4. Example using the Layout Object . 3-53

M. The NotifyWindow Object . 3-54
M.1. xvw_create_notifywindow() — create a notifywindow object 3-54
M.2. Attributes of the NotifyWindow Object 3-55
M.3. Complete Resource Set of the NotifyWindow Object 3-57

N. The Outputfile Object . 3-60
N.1. xvw_create_outputfile() — create a outputfile GUI object 3-60
N.2. Attributes of the OutputFile Object 3-61
N.3. Complete Resource Set of the OutputFile Object 3-62
N.4. Example using the OutputFile Object 3-62

O. The TextDisplay Object . 3-65
O.1. xvw_create_textdisplay() — create a textdisplay object 3-65
O.2. Attributes of the TextDisplay Object 3-66
O.3. Complete Resource Set of the Textdisplay Object 3-69
O.4. Example using the Textdisplay Object 3-69

P. The TextInput Object . 3-72
P.1. xvw_create_textinput() — create a textinput object 3-72
P.2. Attributes of the TextInput Object . 3-73
P.3. Complete Resource Set of the TextInput Object 3-74

Q. The Warn Object . 3-76
Q.1. xvw_create_warn() — create a warning object 3-76
Q.2. Attributes of the Warn Object . 3-77
Q.3. Complete Resource Set of the Warn Object 3-78
Q.4. Example using the Warn Object . 3-79

- ii -

Program Services Volume III

Chapter 4

The Graphics Attributes

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 4 - The Graphics Attributes

The visual objects in the xvisual, xvplot, and xvannotate libraries inherit the attributes of the graphics class,
called graphics attributes. The graphics attributes are only listed once, in this section. The objects which are
subclassed from the graphics class and inherit the graphics attributes are listed below.

- The area object
- The 2D axis object
- The circle object
- The date object
- The ellipse object
- The image object
- The indicator object
- The line object
- The marker object
- The 2D plot object
- The 3D plot object
- The polyline object
- The rectangle object
- The string object
- The stringvalue object
- The text string object
- The timer object
- The zoom object

You can set or get the graphics attributes on any of the visual objects listed above without error. Howev er, sim-
ply because a visual object has inherited an attribute from its Graphics superclass does not necessarily mean
that it will use the attribute. It is the nature of the visual object itself that will dictate whether or not a particu-
lar graphics attribute applies.

In general, common sense will be a sufficient guide to determine which attributes apply to which visual
objects. For example, the circle object is as a closed shape; thus, it can be expected that setting XVW_GRAPH-
ICS_FILLED to TRUE on the circle object will cause the circle object to be filled. The line object, on the
other hand, is not a filled shape; accordingly, it can be expected that setting XVW_GRAPHICS_FILLED to TRUE
on the line object will have no effect.

Some graphics attributes are applicable only to a certain group of visual objects that share a particular charac-
teristic, such as a marker component or subpart. Such attributes are defined by the graphics class rather than
by the particular objects in question because other objects which also need the attribute would not otherwise
inherit it. For example, it is desirable to be able to set the marker type with XVW_GRAPHICS_MARKERTYPE on
a 2D plot object for use when it is displaying a scatterplot or a linemarker plot. Since the 2D plot object is not
subclassed from the marker object, this "marker-specific" attribute would not be available to the 2D plot object
if it was an attribute of the marker itself. By making the marker type an attribute of the graphics class, the
XVW_GRAPHICS_MARKERTYPE attribute can be set not only on the marker object, but also on the 2D plot
object, the 3D plot object, and the indicator object, all of which also use markers.

4-1

The Graphics Attributes Program Services Volume III - Chapter 4

Graphics attributes can be loosely categorized into two groups: "appearance" attributes and "world view"
attributes. Appearance attributes provide control over the appearance of the visual object, while world view
attributes control how they are displayed with respect to their "world."

A. Appearance Attributes

A few of the graphics attributes can be generally applied to control the appearance of most visual objects. For
example, most visual objects can be filled with the foreground color by setting XVW_GRAPHICS_FILLED to
TRUE. Visual objects that have line components can have their line type and line width controlled with
XVW_GRAPHICS_LINETYPE and XVW_GRAPHICS_LINEWIDTH . Those visual objects that have one or more
marker components can have the marker scale and marker type set with XVW_GRAPHICS_MARKERSCALE and
XVW_GRAPHICS_MARKERTYPE .

Summary of Appearance Attributes

Attribute Description

XVW_GRAPHICS_FILLED When set to true, this attribute indicates that the object should be filled

with the foreground color; objects are not filled by default.

XVW_GRAPHICS_LINETYPE Visual objects involving a line may specify the line type.

XVW_GRAPHICS_LINEWIDTH Visual objects involving a line may specify the line width.

XVW_GRAPHICS_MARKERSCALE Visual objects involving one or more markers may specify the size of

marker(s).

XVW_GRAPHICS_MARKERTYPE Visual objects involving one or more markers may specify the marker

type to be used by the marker(s). Choices include an arc, a bow tie, a

box, a caret, a circle, a cross, a dagger, a diamond, a dot, a hexagon, a

point, a pixel, a square, a triangle, an "X", or a "V".

Descriptions of Appearance Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_FILLED

(graphicsFilled)

int FALSE TRUE/FALSE

XVW_GRAPHICS_LINETYPE

(graphicsLinetype)

int KLINE_SOLID KLINE_SOLID

KLINE_DOTTED

KLINE_DOT_DASH

KLINE_SHORT_DASH

KLINE_LONG_DASH

KLINE_ODD_DASH

KLINE_GRID_DOTTED

4-2

The Graphics Attributes Program Services Volume III - Chapter 4

Descriptions of Appearance Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_LINEWIDTH

(graphicsLinewidth)

int KLINE_EXTRA_FINE KLINE_EXTRA_FINE

KLINE_FINE

KLINE_MEDIUM_FINE

KLINE_MEDIUM

KLINE_MEDIUM_WIDE

KLINE_WIDE

KLINE_EXTRA_WIDE

XVW_GRAPHICS_MARKERSCALE

(graphicsMarkerScale)

integer 1 value >= 1

XVW_GRAPHICS_MARKERTYPE

(graphicsMarkertype)

int KMARKER_SQUARE KMARKER_ARC

KMARKER_BOW_TIE

KMARKER_BOX

KMARKER_CARET

KMARKER_CIRCLE

KMARKER_CROSS

KMARKER_DAGGER

KMARKER_DIAMOND

KMARKER_DOT

KMARKER_HEXAGON

KMARKER_POINT

KMARKER_PIXEL

KMARKER_SQUARE

KMARKER_TRIANGLE

KMARKER_X

KMARKER_V

B. World View Attributes

The world view of a visual object refers collectively to the current settings of the viewport maximums and
minimums, the world coordinate maximums and minimums, the perspective, the axis mode, and the symmetry.
The following sections explain how to use the attributes that are related to various aspects of the world view.

B.1. World Coordinates

The size and position of a visual object in space is described by its world coordinates. The xvgraphics library
uses a cartesian coordinate system, the bounds of which are specified using world coordinate maximums and
minimums, or "wcmins" and "wcmaxes." The application can specify any floating-point values for the wcmins
and wcmaxes; the XVW_GRAPHICS_WCMIN_{X,Y,Z} and XVW_GRAPHICS_WCMAX_{X,Y,Z} attributes are
used on the parent object 1 to specify the values. Visual objects should have world coordinate locations that

1 By default, the parent of a visual object specifies its wcmins and wcmaxes; the exception to this
is when the visual object is "attached" to itself or a sibling.

4-3

The Graphics Attributes Program Services Volume III - Chapter 4

place them within the bounds set by the wcmins and wcmaxes. Unless a visual object is located within these
bounds, it will not be displayed.

The attributes that are used to specify the world coordinate size and location of a particular visual object are
defined by that object. For example, the rectangle object’s world coordinates are specified with the
XVW_RECTANGLE_X and XVW_RECTANGLE_Y attributes, while the circle object’s world coordinates are speci-
fied with the XVW_CIRCLE_XCENTER and XVW_CIRCLE_YCENTER attributes. See the section on the visual
object of interest for a listing and explanation of the attributes that are used to set its world coordinates.

XVW_GRAPHICS_WCMAX_X
XVW_GRAPHICS_WCMIN_X
XVW_GRAPHICS_WCMIN_Y

XVW_RECTANGLE_X
XVW_RECTANGLE_Y

XVW_RECTANGLE_WIDTH

XVW_RECTANGLE_HEIGHT

Area object parent

XVW_GRAPHICS_WCMAX_Y

Figure 1: A rectangle annotation is positioned and sized within its area object parent using world coordi-
nates. The world-coordinate range is specified by the wcmin and wcmax of the parent area object; the
world-coordinate origin is located in the lower, left-hand corner.

The concept of world coordinates contrasts with that of device coordinates. The literal position, in pixels, of a
visual object within its parent is defined by its device coordinates, the bounds of which are defined by the
physical size of its parent. Sizing of visual objects with device coordinates is done using the XVW_WIDTH and
XVW_HEIGHT attributes; positioning of visual objects with device coordinates is achieved using the XVW_XPO-
SITION and XVW_YPOSITION attributes; see section B.1 of Chapter 2, "The xvwidgets Library" for more
information on these attributes.

It is important to understand that when device coordinate specifications are used to place a visual object, the
device coordinates of the object always refer to the upper, left-hand corner of the bounding box surrounding
the object. In contrast, the world coordinates of an object sometimes refers to the center of the object; read the
explanation of the world coordinate attributes for the object in question to discover if this is the case. For
example, the marker object, the circle object, and the ellipse object are three examples of visual objects that
have world coordinate locations referring to the center of the object, while the device coordinate locations refer
to the upper, left-hand corner of their bounding boxes.

4-4

The Graphics Attributes Program Services Volume III - Chapter 4

(0,0) (width, 0)

(width, height)(height, 0)

XVW_XPOSITION
XVW_YPOSITION

XVW_WIDTH

XVW_HEIGHT

Area object parent

Figure 2: A circle annotation is positioned and sized within its area object parent using device coordi-
nates. The device coordinate range is specified by the actual width and height of the parent area object;
the device coordinate origin is located in the upper, left-hand corner.

Visual objects may be sized and positioned using either world coordinates or device coordinates. Of course,
the actual display of visual objects is always done using device coordinates. Internally, world coordinate spec-
ifications are mapped into device coordinate specifications before visual objects are placed on the screen.

The use of world coordinates rather than device coordinates for sizing and placement of visual objects has
important advantages. Since world coordinates are not dependent on the physical dimensions of the parent
object, it is not necessary to know the size of the parent in order to place visual objects within it. Furthermore,
the parent can be resized by the user without disturbing the size or location of the visual objects within it.
Most importantly, since world coordinates can be set to any floating point values, they can be tailored to "make
sense" within the context of any application.

4-5

The Graphics Attributes Program Services Volume III - Chapter 4

WC to DC
conversion

DC to WC
conversion

Conceptual World View
"the way you think of your data"

Rectangle Positioned
in World Coordinates (WCs)

Rasterized Device View
"what you see on your screen"

Rectangle Positioned
in Device Coordinates (DCs)

pixel (0,0)

WC Max

WC Min

Figure 3: When world coordinates are used to specify the location of a visual object, the world coordi-
nates are internally converted into device coordinates in preparation for actual display on the screen.
While any visual object may be placed directly using device coordinates, world coordinates are often eas-
ier as well as more flexible to use than device coordinates.

For consistency, either world coordinates or device coordinates (not both) should be used with a particular
instance of a visual object. For example, a circle might be placed using the world coordinate XVW_CIR-
CLE_XCENTER and XVW_CIRCLE_YCENTER , and sized using XVW_CIRCLE_RADIUS . Alternatively, it might
be placed using the device coordinate XVW_XPOSITION and XVW_YPOSITION , and sized using XVW_WIDTH
and XVW_HEIGHT . Mixing the use of world coordinate settings with device coordinate settings on the same
instance of a particular visual object is not recommended, however. At best, the specifications will be confus-
ing, while at worst, unexpected and incorrect results may occur.

By default, the X and Y wcmins are 0.0 and the X and Y wcmaxes are 1.0 2 and the origin is considered to be
in the lower, left-hand corner for all visual objects except image objects (a special case that will be discussed
separately).

2 World coordinate bounds are also from 0.0 to 1.0 in the Z direction for the 3D plot object.

4-6

The Graphics Attributes Program Services Volume III - Chapter 4

(0,0) (width, 0)

(width, height)(height, 0)

(1.0, 1.0)

(0.0,0.0)

(0.0, 1.0)

(1.0, 0.0)

(40, 40)

(0.25, 0.5)
XVW_CIRCLE_XCENTER
XVW_CIRCLE_YCENTER

XVW_XPOSITION
XVW_YPOSITION

XVW_GRAPHICS_WCMIN_X,
XVW_GRAPHICS_WCMIN_Y

XVW_GRAPHICS_WCMAX_X,
XVW_GRAPHICS_WCMAX_Y

Figure 4: By default, the world coordinate range of an area object is (<0,0>, <1,1>). A circle annotation
might be placed within an area object parent using a world coordinate specification of its center at (0.25,
0.25); alternatively, it might be placed with a device coordinate specification of the upper left hand corner
of its bounding box at (40,40).

(0,0) (width, 0)

(width, height)(height, 0)

(9000.0, 5000.0)

(0.0,0.0)

(0.0, 5000.0)

(9000.0, 0.0)

(40, 40)

(2500.0, 2500.0)
XVW_CIRCLE_XCENTER
XVW_CIRCLE_YCENTER

XVW_XPOSITION
XVW_YPOSITION

XVW_GRAPHICS_WCMIN_X,
XVW_GRAPHICS_WCMIN_Y

XVW_GRAPHICS_WCMAX_X,
XVW_GRAPHICS_WCMAX_Y

Figure 5: In this example, the wcmins and wcmaxes of the area object have been increased to (<0,9000>,
<0,5000>). The device coordinate location of the circle annotation is the same as in the previous figure;
however, the world coordinate location is now relative to the modified world coordinate range of the area
object.

4-7

The Graphics Attributes Program Services Volume III - Chapter 4

The image object presents a special case; its world coordinates are treated differently than other visual objects.
Unless otherwise specified, the device coordinate values of an image object are the same as its world coordi-
nate values. Like other visual objects, the wcmins of an image object are 0.0; however, the wcmaxes of the
image object are automatically set according to its width and height instead of being set to 1.0 by default. Fur-
thermore, the origin of an image object is in the upper left hand corner rather than in the lower left hand corner.
This makes sizing and placement of visual objects (specifically annotations) within an image object consistent
with the orientation of the image itself.

(0,0) (width, 0)

(width, height)(height, 0)

(width, 0.0)(0.0,0.0)

(height, 0.0) (width, height)

(40, 40)

(50.0,50.0)
XVW_CIRCLE_XCENTER
XVW_CIRCLE_YCENTER

XVW_XPOSITION
XVW_YPOSITION

XVW_GRAPHICS_WCMIN_X,
XVW_GRAPHICS_WCMIN_Y

XVW_GRAPHICS_WCMAX_X,
XVW_GRAPHICS_WCMAX_Y

Figure 6: The image object

When visual objects such as annotations are created with an image object as their parent, world coordinates
should always be used to size and place them. Since the world coordinate values of an image object are the
same as the device coordinate values, any reason for preferring the use of device coordinates will not apply.
The key issue, however, is support of large images. Suppose an image object is used to display an image that
is too large to fit in the image window, and that a pan icon is needed to allow the user to control the portion of
the image that appears in the image window. Suppose further that one or more visual objects (such as annota-
tions) are created as children of the image object, so that they are displayed on top of the image. Only when
world coordinates are used to place the annotations will they be able to maintain their relative position with
respect to the image as the user pans about the image.

4-8

The Graphics Attributes Program Services Volume III - Chapter 4

Image Window Large Image

Annotation
attached to parent image

...the annotation stays
fixed on large image

As the Image Window
moves over the large image

Figure 7: World coordinates must be used to place annotations on a large image, so that when the user
pans about the image, the annotations will be able to maintain their correct positions on the image.

Summary of Attributes that Control World Coordinates

Attribute Description

XVW_GRAPHICS_RESET_WORLD This action attribute will cause the object to search all its children for

the overall maximum and minimum, and will adjust the global maxi-

mum and minimum accordingly, so that all visual objects within the

object are shown. Note that it is used only with the area object.

XVW_GRAPHICS_WCMAX_X This attribute specifies the maximum value of the world coordinate

range in the X direction. Note that this attribute should only be set on

the visual object that is serving as the "controlling" visual object (see

Section C.4, "Attaching the World View").

XVW_GRAPHICS_WCMAX_Y his attribute specifies the maximum value of the world coordinate range

in the Y direction. Note that this attribute should only be set on the

visual object that is serving as the "controlling" visual object (see Sec-

tion C.4, "Attaching the World View").

XVW_GRAPHICS_WCMAX_Z This attribute specifies the maximum value of the world coordinate

range in the Z direction. Note that this attribute should only be set on

the visual object that is serving as the "controlling" visual object (see

Section C.4, "Attaching the World View"). Note that this attribute only

applies to 3D objects.

XVW_GRAPHICS_WCMIN_X This attribute specifies the minimum value of the world coordinate

range in the X direction. Note that this attribute should only be set on

the visual object that is serving as the "controlling" visual object (see

Section C.4, "Attaching the World View").

XVW_GRAPHICS_WCMIN_Y This attribute specifies the minimum value of the world coordinate

range in the Y direction. Note that this attribute should only be set on

the visual object that is serving as the "controlling" visual object (see

Section C.4, "Attaching the World View").

4-9

The Graphics Attributes Program Services Volume III - Chapter 4

Summary of Attributes that Control World Coordinates

Attribute Description

XVW_GRAPHICS_WCMIN_Z This attribute specifies the minimum value of the world coordinate

range in the Z direction. Note that this attribute should only be set on

the visual object that is serving as the "controlling" visual object (see

Section C.4, "Attaching the World View"). Note that this attribute only

applies to 3D objects.

Descriptions of Attributes that Control World Coordinates

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_RESET_WORLD

(N/A)

int N/A (action

attribute)

TRUE/FALSE

XVW_GRAPHICS_WCMAX_X

(N/A)

double 1.0 value > XVW_GRAPHICS_WCMIN_X

XVW_GRAPHICS_WCMAX_Y

(N/A)

double 1.0 value > XVW_GRAPHICS_WCMIN_Y

XVW_GRAPHICS_WCMAX_Z

(N/A)

double 1.0 value > XVW_GRAPHICS_WCMIN_Z

XVW_GRAPHICS_WCMIN_X

(N/A)

double 0.0 value < XVW_GRAPHICS_WCMAX_X

XVW_GRAPHICS_WCMIN_Y

(N/A)

double 0.0 value < XVW_GRAPHICS_WCMAX_Y

XVW_GRAPHICS_WCMIN_Z

(N/A)

double 0.0 value < XVW_GRAPHICS_WCMAX_X

B.2. Viewport Coordinates

The viewport minimums and maximums of a visual object describe the size and location of the region in
which children of the object may be displayed. Legal values for the viewport minimums and minimums range
0.0 to 1.0, where (0.0, 0.0) is the lower, left-hand corner of the object, and (1.0, 1.0) is the upper, right-hand
corner of the object. Viewports produce a "buffer" of space around the region in which child objects are dis-
played, and are generally used to improve the general appearance of a visual display.

The entire world-coordinate extent of the object must be isolated within the bounds of the viewport. To
achieve this, the wcmins and wcmaxes of the object are offset so that their locations match the locations of the
viewport minimums and maximums. Because the viewport applies only to the placement of children within a
visual object, setting the viewport will only have an effect when used with objects that lay out children. In par-
ticular, the area object is the object most frequently given a viewport; it is very rare that viewport settings are
made on any other visual object.

4-10

The Graphics Attributes Program Services Volume III - Chapter 4

Viewport is defined within area

Viewport contains the entire world coordinate extent
of the children of the area object.

area object

Figure 8: The wcmins and wcmaxes of the area object are offset so that they are within the bounds of the
viewport.

For example, suppose a 2D visual object is created inside an area object where the world coordinate minimum
is (2.0, 2.0) and maximum is (4.0, 4.0). If area object had its viewport minimum set to (0.25, 0.25) and its
viewport maximum set to (1.0, 1.0), the region containing the object would be offset to the upper right.

Area object

0.0 0.25 0.5 0.75 1.0

0.25

1.0

0.75

0.5

viewport

2.0 4.0

Figure 9: An axis object and a plot object, created as children of an area object having its viewport set to
(<0.25,1.0>, <0.25,1.0>).

4-11

The Graphics Attributes Program Services Volume III - Chapter 4

Area object

0.0 0.25 0.5 0.75 1.0

0.25

1.0

0.75

0.5

viewport

2.0 4.0

Figure 10: If the same area object has its viewport set to (<0.0,0.0>, <0.75,0.75>), the portion of the area
object in which the axis and the plot is displayed will be moved to the lower, left corner.

By default, the viewport is set to (<0.0,0.0>, <1.0,1.0>), which is the entire object; thus, by default, the view-
port will have no effect. The most common use for a viewport is on an area object which is to contain a 2D
axis object and one or more 2D plot objects. In this case, a viewport is recommended to provide some space
between the 2D axis and the edges of the area object. A recommended setting for the viewport of the area
object is (<0.1,0.1>, <0.9,0.9>) if the 2D axis will not be labelled, or (<0.2,0.9>, <0.2,0.9>) if the 2D axis will
have labels for the X and Y axes.

Summary of Attributes that Control the Viewport

Attribute Description

XVW_GRAPHICS_VIEWPORT_MAX_X This attribute specifies the maximum viewport value in the X direction.

Note that this attribute should only be set on the visual object that is

serving as the "controlling" visual object (see Section C.4, "Attaching

the World View").

XVW_GRAPHICS_VIEWPORT_MAX_Y This attribute specifies the maximum viewport value in the Y direction.

Note that this attribute should only be set on the visual object that is

serving as the "controlling" visual object (see Section C.4, "Attaching

the World View").

XVW_GRAPHICS_VIEWPORT_MAX_Z This attribute specifies the maximum viewport value in the Z direction.

Note that this attribute should only be set on the visual object that is

serving as the "controlling" visual object (see Section C.4, "Attaching

the World View"). Note that this attribute is only applicable to 3D

objects.

XVW_GRAPHICS_VIEWPORT_MIN_X This attribute specifies the minimum viewport value in the X direction.

Note that this attribute should only be set on the visual object that is

serving as the "controlling" visual object (see Section C.4, "Attaching

the World View").

4-12

The Graphics Attributes Program Services Volume III - Chapter 4

Summary of Attributes that Control the Viewport

Attribute Description

XVW_GRAPHICS_VIEWPORT_MIN_Y This attribute specifies the minimum viewport value in the Y direction.

Note that this attribute should only be set on the visual object that is

serving as the "controlling" visual object (see Section C.4, "Attaching

the World View").

XVW_GRAPHICS_VIEWPORT_MIN_Z This attribute specifies the minimum viewport value in the Z direction.

Note that this attribute should only be set on the visual object that is

serving as the "controlling" visual object (see Section C.4, "Attaching

the World View"). Note that this attribute is only applicable to 3D

objects.

Descriptions of Attributes that Control the Viewport

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_VIEWPORT_MAX_X

(graphicsViewportMaxX)

double 1.0 value > XVW_GRAPHICS_VIEW-

PORT_MIN_X

XVW_GRAPHICS_VIEWPORT_MAX_Y

(graphicsViewportMaxY)

double 1.0 value > XVW_GRAPHICS_VIEW-

PORT_MIN_Y

XVW_GRAPHICS_VIEWPORT_MAX_Z

(graphicsViewportMaxZ)

double 1.0 value > XVW_GRAPHICS_VIEW-

PORT_MIN_Z

XVW_GRAPHICS_VIEWPORT_MIN_X

(graphicsViewportMinX)

double 0.0 value < XVW_GRAPHICS_VIEW-

PORT_MAX_X

XVW_GRAPHICS_VIEWPORT_MIN_Y

(graphicsViewportMinY)

double 0.0 value < XVW_GRAPHICS_VIEW-

PORT_MAX_Y

XVW_GRAPHICS_VIEWPORT_MIN_Z

(graphicsViewportMinZ)

double 0.0 value < XVW_GRAPHICS_VIEW-

PORT_MAX_Z

B.3. Perspective

These attributes controls the viewing perspective orientation.

Summary of Attributes that Control 3D Perspective

Attribute Description

XVW_GRAPHICS_ALPHA Rotates the camera (the eye) about the X axis.

XVW_GRAPHICS_EYE The eye distance moves the camera (the eye) either closer to or farther

aw ay from the plot. Setting the eye distance to 0 would be as if the eye

was touching the object.

XVW_GRAPHICS_GAMMA Rotates the camera (the eye) about the Y axis.

4-13

The Graphics Attributes Program Services Volume III - Chapter 4

Summary of Attributes that Control 3D Perspective

Attribute Description

XVW_GRAPHICS_PROJECTION This attribute specifies the projection type. Supported settings include:

KGRAPHICS_PERSPECTIVE- a projection in which parallel lines not

parallel to the projection plane converge to a vanishing point.

KGRAPHICS_ORTHOGRAPHIC- a parallel projection in which the direc-

tion of projection and the normal to the projection plane are identical.

KGRAPHICS_CAVALIER- an oblique projection in which the direction

of projection makes a 45 degree angle with the direction of the projec-

tion plane; as a result, the projection of a line perpendicular to the pro-

jection plane is the same length as the line itself.

KGRAPHICS_CABINET- an oblique projection in which
the direction of projection makes an angle of arc-
cot (1/2) with the projection plane so that lines
perpendicular to the projection plane project at
half their actual length; this projection is consid-
ered more realistic than the cavalier projection.

XVW_GRAPHICS_THETA Rotates the camera (the eye) about the Z axis.

XVW_GRAPHICS_VIEWDISTANCE The distance of the viewport from the object.

Descriptions of Attributes that Control 3D Perspective

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_ALPHA

(graphicsAlpha)

double 300.0 0.0 - 360.0 (alpha is given in degrees)

XVW_GRAPHICS_EYE

(graphicsEye)

double 1.0 value > 0.0

XVW_GRAPHICS_GAMMA

(graphicsGamma)

double 0.0 0.0 - 360.0 (gamma is given in degrees)

XVW_GRAPHICS_PROJECTION

(graphicsProjection)

int KGRAPHICS_PERSPECTIVE KGRAPHICS_PERSPECTIVE

KGRAPHICS_ORTHOGRAPHIC

KGRAPHICS_CAVALIER

KGRAPHICS_CABINET

XVW_GRAPHICS_THETA

(graphicsTheta)

double 70.0 0.0 - 360.0 (theta is given in degrees)

XVW_GRAPHICS_VIEWDISTANCE

(graphicsViewdistance)

double 6.0 any values within the world coordinate

system

4-14

The Graphics Attributes Program Services Volume III - Chapter 4

B.4. The Axis Mode

The axis mode may be linear, natural log, or log base 10. Note that natural log is not supported yet.

Summary of Attributes That Control Axis Mode

Attribute Description

XVW_GRAPHICS_MODE_X Whether the X Axis is marked as linear or log 10 scale.

XVW_GRAPHICS_MODE_Y Whether the Y Axis is marked as linear or log 10 scale.

XVW_GRAPHICS_MODE_Z Whether the Z Axis is marked as linear or log 10 scale.

XVW_GRAPHICS_PROPORTIONAL When this attribute is set to KGRAPHICS_NONPROP , the scale in each

axis direction is determined by the world coordinate minimums and

maximums of the data. Thus, if the X values range from 0 to 1, and the

Y values range from 1 to 100, and the physical length of the X and Y

axes are the same, then the scale in the X direction (1) is much smaller

than the scale in the Y direction (100).

In contrast, when this attribute is set to KGRAPHICS_PROP_WINDOWED

or KGRAPHICS_PROP_NONWINDOWED , it causes the scale in each axis

direction to be the same. When a visual object is proportional, this

means that the minimum and maximum values across being displayed

as X and Y are found before the object is displayed. Then the mini-

mum and maximum are set on each axis so that the scale is the same.

If KGRAPHICS_PROP_WINDOWED is specified, then the center of the data

is determined along each axis and the minimum and maximum values

are set such that the data is in the center of the world coordinate space.

If KGRAPHICS_PROP_NONWINDOWED is specified, the range of numbers

covered, i.e, the minimum and maximum values are the same, by the X

and Y axes are the same. The "sense of proportion" conveyed by the

object is correct, but details of the object may be lost if the range

spanned by X varies greatly from that spanned by Y.

In some cases, proportional display not be a good method of display.

For example, suppose a 2D plot object has data displayed as X ranges

from 0 to 255, but the data displayed as Y ranges from 0 to 1. Obvi-

ously, the plot will not be very informative, as all the points will be

bunched against the X axis. In cases like this, non-proportional display

may be more useful.

Descriptions of Attributes That Control Axis Mode

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_MODE_X

(graphicsModeX)

int KGRAPHICS_LINEAR KGRAPHICS_LINEAR

KGRAPHICS_LOG10

4-15

The Graphics Attributes Program Services Volume III - Chapter 4

Descriptions of Attributes That Control Axis Mode

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_MODE_Y

(graphicsModeY)

int KGRAPHICS_LINEAR KGRAPHICS_LINEAR

KGRAPHICS_LOG10

XVW_GRAPHICS_MODE_Z

(graphicsModeZ)

int KGRAPHICS_LINEAR KGRAPHICS_LINEAR

KGRAPHICS_LOG10

XVW_GRAPHICS_PROPORTIONAL

(graphicsProportional)

int KGRAPHICS_NONPROP KGRAPHICS_NONPROP

KGRAPHICS_PROP_WINDOWED

KGRAPHICS_PROP_NONWINDOWED

B.5. Symmetry

When a visual object is symmetrical, the world coordinate maximums and minimums of the object will be
equal in magnitude and opposite in sign. For example, suppose the world coordinate minimum of a visual
object in the X direction is (-1.0) and the world coordinate maximum of the visual object in the X direction is
(0.5). When symmetry is turned on, the world coordinate maximum will be changed to (1.0), since (-1.0) is
larger in magnitude than (0.5).

Summary of Attributes that Control Symmetry

Attribute Description

XVW_GRAPHICS_SYMMETRIC_X When TRUE, this attribute specifies that world coordinates are sym-

metric in the X direction.

XVW_GRAPHICS_SYMMETRIC_Y When TRUE, this attribute specifies that world coordinates are sym-

metric in the Y direction.

XVW_GRAPHICS_SYMMETRIC_Z When TRUE, this attribute specifies that world coordinates are sym-

metric in the Z direction.

Descriptions of Attributes that Control Symmetry

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_SYMMETRIC_X

(graphicsSymmetricX)

int FALSE TRUE/FALSE

XVW_GRAPHICS_SYMMETRIC_Y

(graphicsSymmetricY)

int FALSE TRUE/FALSE

XVW_GRAPHICS_SYMMETRIC_Z

(graphicsSymmetricZ)

int FALSE TRUE/FALSE

4-16

The Graphics Attributes Program Services Volume III - Chapter 4

C. Clipping

Clipping causes any portion of an object that is outside the viewport to be not shown, or "clipped".

Summary of Attributes That Control Clipping

Attribute Description

XVW_GRAPHICS_CLIPPING When TRUE, this attribute turns clipping on; FALSE causes clipping to

be turned off. When clipping is on, any parts of a visual object that

have X and Y world coordinates that lie outside the world coordinate

maximum and minimum values specified for X and Y will not be

drawn. So, for example, an application might implement the capability

to "zoom in" and "zoom out" on a plot simply by changing the world

coordinate maximums and minimums while clipping is on.

XVW_GRAPHICS_DEPTH_CLIPPING When TRUE, this attribute allows a 3D visual object to be clipped with

respect to depth. When depth clipping is on, any portions of a visual

object that have Z world coordinates outside the world coordinate max-

imum and minimum values for Z will not be drawn.

Descriptions of Attributes That Control Clipping

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_CLIPPING

(graphicsClipping)

int TRUE TRUE/FALSE

XVW_GRAPHICS_DEPTH_CLIPPING

(graphicsDepthClipping)

int TRUE TRUE/FALSE

D. Attaching The World View

Recall that the "world view" of a visual object is the current settings of its viewport maximums and mini-
mums, its world coordinate maximums and minimums, its perspective, axis mode, and symmetry.

Frequently, it is necessary that a number of visual objects share the same world view. In this event, it is neces-
sary to specify which visual object will have the "authority" to "impose" its world view on the other visual
objects. This is done by attaching visual objects to one another with the use of the XVW_GRAPHICS_ATTACH
attribute. When a call such as the following is made:

xvw_set_attribute(objectA, XVW_GRAPHICS_ATTACH, objectB);

it is said that objectA is attached to objectB. That is, objectA will get its view of the world from objectB;
objectB will be "in control," and will impose its world view on objectA.

An object may be attached to its parent, to itself, or to a sibling. Its placement depends on how it is attached,
as does its behavior when any aspect of the world view is modified.

4-17

The Graphics Attributes Program Services Volume III - Chapter 4

Summary of Attach Attribute

Attribute Description

XVW_GRAPHICS_ATTACH This attribute indicates the object from which another object will

acquire its world coordinate view. See section C.4, "Attaching the

World View", for a complete explanation of the XVW_GRAPH-

ICS_ATTACH attribute.

Description of Attach Attribute

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_ATTACH

(N/A)

xvobject NULL The object itself, the object’s parent, or

NULL

D.1. Attaching An Object To Its Parent

By default, a visual object is attached to its parent. Thus, the parent will dictate the world view of its children.
The following code:

xvw_set_attribute(object, XVW_GRAPHICS_ATTACH, parent);

is redundant, since the object is already attached to its parent by default.

In a very simple case, consider a marker annotation that is created as a child of an area object. By default, the
marker annotation will inherit the world view of the area object. Also by default, the world coordinate mini-
mums and maximums of the area object are 0.0 to 1.0; thus, the marker annotation will also have world coordi-
nates ranging from 0.0 to 1.0. If the marker is given a world coordinate placement of (0.1, 0.1), it will appear
in the upper left hand corner of the area object; if the marker is given a world coordinate placement of (0.9,
0.9), it will appear in the lower right hand corner of the area object; if the marker is given a world coordinate
placement of (2.0, 5.0), this will be outside its world view, and it will not appear on the area object at all. If the
world coordinate maximums and minimums of the area object are changed, the new values will be passed on
to the marker.

In this way, an area object might be used to contain a number of other visual objects, all of which will be con-
tained in a consistent, coordinated world view. The world view attributes should be set only on the area object;
because each of the visual objects is attached to its parent by default, they will all "inherit" the updated world
view. For example, suppose an area object is the parent of several circle objects. The following code:

coord min, max;
min.x = -2.5; max.x = 6.3;
min.y = -2.5; max.y = 7.8;
xvw_set_attribute(area, XVW_GRAPHICS_WCMIN, min);
xvw_set_attribute(area, XVW_GRAPHICS_WCMAX, max);

will change the world coordinate range of all the circles from the default (<0.0, 1.0>, <0.0, 1.0>) to a new
range of (<-2.5, 2.5>, <6.3, 7.8>).

Another valuable use of this feature is with respect to the annotation of a displayed image. Suppose an image
object is created to display an image, and a number of annotations such as markers, circles, rectangles, and so

4-18

The Graphics Attributes Program Services Volume III - Chapter 4

on are to appear at various locations about the image. The marker, circle, and rectangle visual objects may be
created with the image object as the parent, and placed as desired about the image using world coordinate
placement attributes. Because the annotations will inherit the world view of the image, the world coordinate
range of the markers will be (<0, 0>, <w, h>), where w and h are the width and height of the image, and the
origin is in the upper left hand corner of the image. 3

Image Window Large Image

Annotation
attached to parent image

...the annotation stays
fixed on large image

As the Image Window
moves over the large image

Figure 11: When an annotation is attached to a parent image, and a pan icon is used to pan about a large
image, the annotation will maintain its correct location with respect to the world coordinates of the image.

D.2. Attaching An Object To Itself

Since an object is attached to its parent by default, changes that are made to its own world view will have no
effect. If an object is to be able to control its own world view, it must be explicitly attached to itself, as in the
following:

xvw_set_attribute(axis2d, XVW_GRAPHICS_ATTACH, axis2d);

Only when the axis object is attached to itself can it update itself correctly.

In contrast to the case described in the previous section, where an annotation is attached to its parent, suppose
an annotation which is created as the child of an image object is explicitly attached to itself. By default, the
world coordinate range of the annotation is (<0,0>, <1,1>), and the origin is at the lower left hand corner of the
image.

3 Note that the location of the origin differs between an area object and an image object; the origin
of an area object at the lower left, while the origin of an image is at the upper left.

4-19

The Graphics Attributes Program Services Volume III - Chapter 4

Image Window Large Image

Annotation
attached to self

fixed on image wIndow

As the Image Window
moves over the large image

...the annotation stays

Figure 12: When an annotation is attached to itself rather than the parent image, and a pan icon is used to
pan about a large image, the annotation will maintain its location with respect to its own world coordi-
nates rather than those of the image, and therefore will appear at the same location in the image window,
regardless of panning.

There are a number of cases, most commonly those associated with plotting, where it is necessary that an
object be attached to itself so that it can determine its own world view. For example, consider the case of a 2D
axis that is the child of an area object. If the user of the application changes the values of the viewport, world
coordinate range, axis mode, perspective, or symmetry via the menuform of the 2D axis object, he will of
course expect the displayed axes to update appropriately. Howev er, this cannot happen unless the axis has con-
trol over its own world view.

D.3. Attaching An Object To A Sibling

In some cases, notably those involving both axes and plots, it is necessary for one child of a parent object to
control the world view of one or more other children of the same parent object.

For example, suppose an application presents data in the form of three 2D plots labeled with an axis. Inter-
nally, this is implemented using an area object as the parent of a 2D axis object and three 2D plot objects. If
the user of the application changes the world coordinate minimums via the menuform of the 2D axis object,
he will not only expect the labels on the axis to change, but also that the three plots will update so as to present
the data in a way that is consistent with the labels on the axis.

If the axis object is attached to itself, it will update itself correctly (see the previous section). However, in
order to cause the 2D axis object to control the world view of the three plot objects, the three plot objects must
be attached to the axis:

xvw_set_attribute(plot1, XVW_GRAPHICS_ATTACH, axis2d);
xvw_set_attribute(plot2, XVW_GRAPHICS_ATTACH, axis2d);
xvw_set_attribute(plot3, XVW_GRAPHICS_ATTACH, axis2d);

When this is done, any change to the world view performed via the 2D axis object will be "propagated" to the
three plot objects, which will then update correctly and consistently with the axis.

4-20

Table of Contents

A. Appearance Attributes . 4-2
B. World View Attributes . 4-3

B.1. World Coordinates . 4-3
B.2. Viewport Coordinates . 4-10
B.3. Perspective . 4-13
B.4. The Axis Mode . 4-15
B.5. Symmetry . 4-16

C. Clipping . 4-17
D. Attaching The World View . 4-17

D.1. Attaching An Object To Its Parent . 4-18
D.2. Attaching An Object To Itself . 4-19
D.3. Attaching An Object To A Sibling . 4-20

- i -

The Graphics Attributes Program Services Volume III - Chapter 4

This page left intentionally blank

- ii -

Program Services Volume III

Chapter 5

Xvimage

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 5 - Xvimage

A. Introduction

The xvisual library offers visual objects for the display of images, as well as visual objects for the display and
manipulation of colormap information. The xvisual library also contains the color class, from which all visual
objects in Visualization Services are subclassed. This chapter begins by giving an overview of the visual
objects provided by the xvisual library. Next, it details the color attributes which are inherited by the visual
objects in Visualization Services. Finally, the details on the various visual objects provided by the xvisual
library are given.

A.1. Overview of Visual Objects Related To Imaging

With respect to imaging, the key visual object provided by the xvimage library is, of course, the image object.
The imaging capabilities of the image object are sophisticated and comprehensive. The image object directly
supports display of bit, byte, short, integer, float, and even complex images; no data type conversion is neces-
sary. Full support for 24-bit displays is provided.

Zooming on images is provided by the zoom visual object; the animation visual object provides a quick, easy
way to do animation of image sequences. Large images may have a pan icon visual object created to allow the
user to change the portion of the image that appears in the image window, while any image may be made into
an icon using the image icon visual object. Regular and irregular regions of interest may be interactively
extracted from and inserted into the displayed image using an attribute of the image visual object created for
that purpose. Pixel values of an image may be monitored with a printpixel visual object. The visual objects
related to imaging include: the animate object, the image object, the imageicon object the panicon object, the
position object, the printpixel object, and the zoom object.

Av ailable Functions

• xvw_create_animate() - create a slide animation visual object
• xvw_create_image() - create an image object
• xvw_create_imageicon() - create a imageicon object
• xvw_create_panicon() - create a panicon object
• xvw_create_position() - create a position object
• xvw_create_printpixel() - create a printpixel xvobject
• xvw_create_zoom() - create a zoom object

A.2. Overview of Visual Objects Related To Colormap Manipulation

There are variety of methods for changing colormaps. While Color Services offers a variety of different pre-
defined colormaps as well as a number of colormap operations that may be performed on the currently
installed colormap, the xvimage library provides a variety of methods for interactive manipulation of col-
ormaps to augment the noninteractive colormap algorithms defined by data services. A colorcell visual object
may be used to display the color in which a pixel currently appears in the image; the colorcell may further be

5-1

Xvimage Program Services Volume III - Chapter 5

used to change that color according to the needs of the application. The pseudocolor visual object operates
allow you to change a range or discontinous set of values in the colormap to a desired color specified with
RGB values; the colors in the map may be depicted using a set of colorcells, a palette, or a color wheel.

Values in the colormap surrounding the current location of the pointer may be printed in a display with the
printmapval visual object; interactive thresholding and windowing are also supported by the threshold visual
object. Values in the maps may be normalized according to the maximum displayable intensities of a screen,
or with standard deviation normalizations; values displayed as red, green and blue may be specified by any of
the columns of map data provided with an image; for more sophisticated needs, the values displayed as red,
green, and blue may be determined using functions across any or all of the map columns. The visual objects
related to colormap manipulation include: the colorcell object, the palette object, the printmapval object, the
pseudo object, and the threshold object.

Av ailable Functions

• xvw_create_colorcell() - create a colorcell xvobject
• xvw_create_palette() - create a palette object
• xvw_create_printmapval() - create a printmapval xvobject
• xvw_create_pseudo() - create a pseudo xvobject
• xvw_create_threshold() - create a threshold object

B. The Color Attributes

All visual objects in the xvimage library are subclassed from the color object. The attributes they inherit from
the color class are referred to as color attributes. These attributes are only listed once, in this section; they are
referenced by the sections associated with all visual objects with which they are associated. Note that visual
objects in the xvannotate and xvplot libraries also inherit these color attributes.

5-2

Xvimage Program Services Volume III - Chapter 5

Summary of Color Class Attributes

Attribute Description

XVW_COLOR_ALLOC_POLICY A visual describes the characteristics of a virtual colormap that is cre-

ated for use with an application on a particular screen. For a complete

explanation of visuals, you are referred to Chapters 7.2, 7.3, and 7.4 of

The XLib Programming Manual, by Adrian Nye, published by O’Reilly

& Associates. Depending on your particular workstation, you may

have a DirectColor, GreyScale, PseudoColor, StaticColor, StaticGrey,

or TrueColor visual.

XVW_COLOR_BEGIN Use this attribute to specify the beginning of the range of color indices

to be allocated, if that range is to be limited to something other than the

full number of indices in the colormap.

XVW_COLOR_BLUE_FUNCTION This is the function defining the blue value of each pixel in the image.

By default, the XVW_COLOR_BLUE_FUNCTION attribute is set to M2, or

the third map column; thus, it produces the results that you would nor-

mally expect for an image with a colormap, where no function was

being applied. See the explanation for XVW_COLOR_RED_FUNCTION for

more details.

XVW_COLOR_BLUE_MAPCOL This attribute controls which map column is used to specify the blue

values of the pixels in the image; see XVW_COLOR_RED_MAPCOL for

more details.

XVW_COLOR_CALLBACK If desired, you may install a callback that will be fired when the col-

ormap is changed. The colormap may be changed by an autocolor pro-

cedure or a colormap operation being applied, a pseudocoloring opera-

tion, a change in the map data of the data object being displayed, or any

other modification of the colormap.

XVW_COLOR_CHANGE_BLUE_MAPCOL This is an action attribute; i.e, it may only be used with

xvw_set_attribute(s)(). Provide TRUE as the value. See

XVW_COLOR_RED_MAPCOL for more details.

XVW_COLOR_CHANGE_GREEN_MAPCOL This is an action attribute; i.e, it may only be used with

xvw_set_attribute(s)(). Provide TRUE as the value. See

XVW_COLOR_RED_MAPCOL for more details.

XVW_COLOR_CHANGE_RED_MAPCOL This is an action attribute; i.e, it may only be used with

xvw_set_attribute(s)(). Provide TRUE as the value.

This attribute provides a convenient, interactive front end that an appli-

cation may use to allow the user to set the XVW_COLOR_RED_MAPCOL

attribute. It will query the number of map columns associated with the

image, and present the user with a pop-up list of the map columns

available. The user will be allowed to choose one of the map columns

from the list; then, XVW_COLOR_RED_MAPCOL will be automatically set

according to the choice made by the user.

XVW_COLOR_COLORFILE The name of the file containing the colormap to be displayed. Note that

this attribute is mutually exclusive with XVW_COLOR_COLOROBJ; set

one or the other, not both.

5-3

Xvimage Program Services Volume III - Chapter 5

Summary of Color Class Attributes

Attribute Description

XVW_COLOR_COLOROBJ This is the data object containing the colormap to be displayed. Note

that this attribute is mutually exclusive with XVW_COLOR_COLORFILE;

set one or the other, not both.

XVW_COLOR_COLORS This read only attribute can be used to obtain the XColor array repre-

senting the map data for the displayed data object. Red, green, and

blue values are normalized between 0 and 65,536. Pixel values reflect

those that were allocated in order to display the colormap.

XVW_COLOR_END Use this attribute to specify the end of the range of color indices to be

allocated, if that range is to be limited to something other than the full

number of indices in the colormap.

XVW_COLOR_GREEN_FUNCTION This is the function defining the green value of each pixel in the image.

By default, the XVW_COLOR_GREEN_FUNCTION attribute is set to M1, or

the second map column; thus, it produces the results that you would

normally expect for an image with a colormap, where no function was

being applied. See the explanation for XVW_COLOR_RED_FUNCTION for

more details.

XVW_COLOR_GREEN_MAPCOL This attribute controls which map column is used to specify the green

values of the pixels in the image; see XVW_COLOR_RED_MAPCOL for

more details.

XVW_COLOR_NORM_METHOD When normalization is to be performed, this attribute defines the algo-

rithm which is used in normalization. Normalization options allow dif-

ferent emphasis on how the data is displayed.

KCOLOR_NORM_BESTGUESS tries to choose the correct normalization by

looking at the data to be displayed. If the data is floating point and

between 0 and 1 (inclusive), the normalization chooses a minimum of 0

and a maximum of 1 and scales accordingly. Otherwise, if all the data

is between 0 and 255 (inclusive), normalization chooses a minimum of

0 and a maximum of 255. Note that global normalization will always

be used in these cases. If neither of these conditions is met, then

KCOLOR_NORM_MAXCOLORS will be used for the normalization. Using

KCOLOR_NORM_NONE allows normalization to be turned off. This

option assumes the data is already scaled between 0 and 65535.

For a simple normalization of values to within displayable intensity

bounds, use KCOLOR_NORM_MAXCOLORS Alternatively, images can have

contrast increased or reduced using on of the standard deviation nor-

malizations. KCOLOR_NORM_1STDDEV will normalize values to within

1 standard deviation, KCOLOR_NORM_2STDDEV will normalize values to

within 2 standard deviations, and KCOLOR_NORM_3STDDEV will nor-

malize values to within 3 standard deviations.

XVW_COLOR_NORM_TYPE Before colors are displayed by the color class, normalization must be

done in order to ensure that the pixel values of the image fall within a

visible range. Normalization can be one

5-4

Xvimage Program Services Volume III - Chapter 5

Summary of Color Class Attributes

Attribute Description

XVW_COLOR_NORM_UBYTE If desired, you may normalize unsigned byte data. Normally (espe-

cially when comparing images together) you don’t want to perform nor-

malization.

XVW_COLOR_NUMCOLORS This read only attribute is used to obtain the size of the XColor array

returned by XVW_COLOR_COLORS .

XVW_COLOR_PRIVATE_CMAP To summarize very briefly, the color class will be able to allocate more

colors if a private colormap is created. This allows for a better repre-

sentation. However, since colormaps will not be shared with other

applications, this may result in the annoying "techno-flashing" phe-

nomenon where the colormaps of spectrum and any other applications

that happen to be running at the same time are installed and de-installed

as the pointer is moved in and out of the application’s GUI. Thus, if

this application wants as many colors to be allocated as possible, use of

the private colormap allocation scheme is recommended. Technoflash-

ing will increasingly become a problem as the application has to com-

pete with other applications for color. Technoflashing is minimized by

leaving an application with the private colormap set to FALSE, since

the default colormap will be used. However, colors displayed may not

truly reflect their real values.

The recommended solution is to use a logical command line argument

for applications, which will allow the user to change the value of the

XVW_COLOR_PRIVATE_CMAP attribute or set thru the app-defaults.

5-5

Xvimage Program Services Volume III - Chapter 5

Summary of Color Class Attributes

Attribute Description

XVW_COLOR_RED_FUNCTION With images having colormaps made up of more than three columns,

such as those produced by clustering algorithms, it is often informative

to be able to apply a function to the values in those map columns in

order to define the values that will be displayed as each of the red,

green, and blue columns. For example, in an image having 6 map

columns, you might define the red intensity of pixel 10 as (map column

2)[10]+ (map column 3) [10]/ (map column 4) [10]. In this case, the

XVW_COLOR_RED_FUNCTION attribute may be set to the string defining

the function to be applied in order to produce the values that will be

used as red. Functions must have only variable M, where M stands for

"map column"; following each M must be a number starting at zero and

ranging to N-1 where N is the number of map columns available in the

image. For example, a valid function for red might be:

(M2 - M3)/(M2 + M3)

or

(M0 + M1 + M2)/(M3 - M4)

Equation evaluation follows the standard rules of precedence; evalua-

tion proceeds from left to right, and use of parentheses is fully sup-

ported.

In a more simple use, the XVW_COLOR_RED_FUNCTION may also be the

variable representing the map column which is to be used to specify the

red values of the pixels in the image. For example, if you wanted the

fourth map column to define the red values of the pixels in the image,

(remember that map column numbering begins at 0), you could set

XVW_COLOR_RED_FUNCTIONto:

M3

You can also set the XVW_COLOR_RED_FUNCTION to a constant, if

desired. For example, if you wanted the red values of all the pixels in

the image to be 200, you could set XVW_COLOR_RED_FUNCTION to:

200

By default, the XVW_COLOR_RED_FUNCTION attribute is set to M0, or

the first map column; thus, it produces the results that you would nor-

mally expect for an image with a colormap where no function was

being applied.

5-6

Xvimage Program Services Volume III - Chapter 5

Summary of Color Class Attributes

Attribute Description

XVW_COLOR_RED_MAPCOL An image with a simple colormap has three map columns associated

with it, where the pixels in the image are used to index into the map

columns; the first map column defines the red values, the second map

column defines the green values, and the third map column defines the

blue values. In this way, the color for each pixel in the image is

defined. Some images, however, hav e more than three map columns;

for example, output images produced by clustering algorithms may

have many map columns, none of which is necessarily associated only

with red, green, or blue values. When multiple map columns are

present, it may be useful to view any of the map columns as red, green,

or blue.

Thus, the XVW_COLOR_RED_MAPCOL attribute specifies the index of the

map column that is to be used to specify the red values for each of the

pixels in the image. Valid values are from 0 to N-1, where N is the

number of map columns contained with the image.

By default, XVW_COLOR_RED_MAPCOL is set to 0, indicating the first

map column; thus, it produces the results that you would normally

expect for an RGB image where only three map columns were present.

Note that setting XVW_COLOR_RED_MAPCOL to the integer representing

the desired map column is the same as setting the

XVW_COLOR_RED_FUNCTION attribute to the variable Mx, where x is the

index of the desired map column. For example, setting

XVW_COLOR_RED_MAPCOL to 5 is the same as setting

XVW_COLOR_RED_FUNCTION to "M5".

5-7

Xvimage Program Services Volume III - Chapter 5

Summary of Color Class Attributes

Attribute Description

XVW_COLOR_RELOAD Use of this action attribute causes the data to be re-read from the asso-

ciated data object; the data is then redisplayed.

Use of this attribute is useful when displaying data with a large number

of image values. When displaying such data on screens that are less

than 24 bit, the limitation of the number of colorcells available for allo-

cation on the screen can cause difficulties in realistically displaying the

colors in the data.

If the data being displayed has more values than can be accomodated

by the screen, then some data values must be mapped to the same pixel

as other data values.

Consider the situation of a large image that cannot be displayed in its

entirety, and furthermore containing a much greater number of image

values than can be displayed on the current screen, not all of which

appear in every region of the image. The displayed result will be most

acceptable for the region of the image was loaded first, since the image

values in that region of the image will have the greatest chance of get-

ting unique pixel values allocated for them. However, other regions of

the image with a large number of data values that differ from the values

of the first region may suffer from the effect of having a large number

of data values all being mapped to the same pixel value. Such situa-

tions can be rectified by allowing the currently region to be re-read

from scratch, causing the color allocation process to be redone, and the

current region being allowed to commandeer all the available pixel val-

ues.

XVW_COLOR_SAVEMAP This action attribute allows you to save the colormap associated with

the displayed data object by itself; that is, the data object written out

will not contain value, mask, time, or location data, but only the map

data.

Descriptions of Color Class Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_COLOR_ALLOC_POLICY

(N/A)

int KCOLOR_ALLOC_READONLY KCOLOR_ALLOC_READONLY

KCOLOR_ALLOC_READWRITE

XVW_COLOR_BEGIN

(N/A)

int 0 0 to height of colormap

XVW_COLOR_BLUE_FUNCTION

(N/A)

char * "M2" see description

5-8

Xvimage Program Services Volume III - Chapter 5

Descriptions of Color Class Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_COLOR_BLUE_MAPCOL

(N/A)

int 0 valid map column index

XVW_COLOR_CALLBACK

(N/A)

kfunc_void NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_COLOR_CHANGE_BLUE_MAPCOL

(N/A)

int N/A (action

attribute)

TRUE

XVW_COLOR_CHANGE_GREEN_MAPCOL

(N/A)

int N/A (action

attribute)

TRUE

XVW_COLOR_CHANGE_RED_MAPCOL

(N/A)

int N/A (action

attribute)

TRUE

XVW_COLOR_COLORFILE

(N/A)

char * NULL name of file w/ colormap

XVW_COLOR_COLOROBJ

(N/A)

kobject NULL valid data object

XVW_COLOR_COLORS

(N/A)

XColor * NULL

XVW_COLOR_END

(N/A)

int 0 0 to height of colormap

XVW_COLOR_GREEN_FUNCTION

(N/A)

char * "M1" see description

XVW_COLOR_GREEN_MAPCOL

(N/A)

int 0 valid map column index

XVW_COLOR_NORM_METHOD

(colorNormMethod)

int KCOLOR_NORM_MAXCOLORS KCOLOR_NORM_MAXCOLORS

KCOLOR_NORM_1STDDEV

KCOLOR_NORM_2STDDEV

KCOLOR_NORM_3STDDEV

KCOLOR_NORM_BESTGUESS

KCOLOR_NORM_NONE

XVW_COLOR_NORM_TYPE

(colorNormType)

int KCOLOR_NORM_LOCAL KCOLOR_NORM_GLOBAL

KCOLOR_NORM_LOCAL

XVW_COLOR_NORM_UBYTE

(colorNormUbyte)

int TRUE TRUE/FALSE

XVW_COLOR_NUMCOLORS

(N/A)

int 0 value > 0

XVW_COLOR_PRIVATE_CMAP

(colorPrivateCmap)

int FALSE TRUE/FALSE

XVW_COLOR_RED_FUNCTION

(N/A)

char * "M0" see description

5-9

Xvimage Program Services Volume III - Chapter 5

Descriptions of Color Class Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_COLOR_RED_MAPCOL

(N/A)

int 0 valid map column index

XVW_COLOR_RELOAD

(N/A)

int N/A TRUE (action attribute)

XVW_COLOR_SAVEMAP

(N/A)

char * NULL valid filename

C. Visual Objects Related to Imaging

C.1. The Animate Object

Figure 1: Here, the "sequence:baby" animation is displayed in an animation object, with the internal men-
uform of the animation object displayed. The animation menuform supports modification of the various
animation attributes, such as sequence direction, frame number display, update time, and so on.

5-10

Xvimage Program Services Volume III - Chapter 5

C.1.1. xvw_create_animate() — create a slide animation visual object

Synopsis
xvobject xvw_create_animate(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the animate object (for use in app-defaults files, etc)

Returns
The animate object on success, NULL on failure

Description
An animation visual object provides a mechanism with which a sequence of images may be animated.
When stored in a K2 KDF file, image frames may be organized down depth, time, or elements.
Attributes offer control over the speed with which the image frames are changed, and the direction of
the animation. Animations may run in a single loop (one pass through the frames), a continuous loop
(continual forward passes through the frames), or an autoreverse loop (continual passes forward
through the frames, first forwards, then backwards).

C.1.2. Attributes of the Animation Object

Summary of Animate Attributes

Attribute Description

XVW_ANIMATE_CALLBACK If desired, a callback may be installed on the animate object that will be

fired each time a new image in the sequence is displayed. The frame

number will be passed in as the call_data; cast this parameter to an

integer before using, as in:

int frame_number = (int) call_data;

5-11

Xvimage Program Services Volume III - Chapter 5

Summary of Animate Attributes

Attribute Description

XVW_ANIMATE_CONTROL This attribute allows you to control how the sequencing is or KANI-

MATE_DIRECTION_REVERSE . The animation may be performed once

completely, repeated indefinitely, or performed in one direction then

reversed and repeated in the other direction.

KANIMATE_CONTROL_LOOP ("Loop" on the "Control" selection of the

menuform) does a full sequence through the animation, in the current

animation direction. As soon as the sequence is finished, it is started

again, so that the animation is put into a loop. This procedure will

repeat until the animation is stopped.

KANIMATE_CONTROL_SINGLE ("Single" on the "Control" selection of

the menuform) does a single complete sequence of the animation, in the

current animation direction, and then stops.

ANIMATE_CONTROL_AUTOREVERSE ("Reverse" on the "Control" selec-

tion of the menuform) does a single complete sequence of the anima-

tion, in the current animation direction, then reverses the direction and

sequences back. This procedure will repeat until the animation is

stopped.

XVW_ANIMATE_DIRECTION This attribute provides control over the direction in which the images

are sequenced. Values include:

KANIMATE_DIRECTION_STOP ("Stop" on the "Direction" toggle of the

menuform) causes the animation to stop.

KANIMATE_DIRECTION_PREVIOUS , ("<" on the "Direction" toggle of

the menuform) advances a single frame in a backwards direction (frame

N to N-1).

KANIMATE_DIRECTION_NEXT , (">" on the "Direction" toggle of the

menuform) advances a single frame in a forward direction (from frame

N to N+1).

KANIMATE_DIRECTION_REVERSE , ("<<" on the "Direction" toggle of

the menuform) causes the animation to sequence in a backward direc-

tion.

KANIMATE_DIRECTION_FORWARD , (">>" on the "Direction" toggle of

the menuform) causes the animation to sequence in a forward direction.

XVW_ANIMATE_UPDATETIME The time interval, in seconds, which will elapse before the animation

object is updated with the next image in the sequence.

5-12

Xvimage Program Services Volume III - Chapter 5

Descriptions of Animate Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_ANIMATE_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_ANIMATE_CONTROL

(animateControl)

int KANIMATE_CONTROL_LOOP KANIMATE_CONTROL_LOOP

KANIMATE_CONTROL_SINGLE

KANIMATE_CONTROL_AUTOREVERSE

XVW_ANIMATE_DIRECTION

(animateDirection)

int KANIMATE_DIREC-

TION_STOP

KANIMATE_DIRECTION_STOP

KANIMATE_DIRECTION_PREVIOUS

KANIMATE_DIRECTION_NEXT

KANIMATE_DIRECTION_REVERSE

KANIMATE_DIRECTION_FORWARD

XVW_ANIMATE_UPDATETIME

(animateUpdatetime)

double 1.0 value > 0.0

C.1.3. Resource Set of the Animation Object

The inheritance tree of the animation object is as follows:

manager -> graphics -> color -> image -> animate

Accordingly, the complete resource set for the animation object includes:

1. The animate object attribute resource set, given above

2. The image object attribute resource set, given in Section C.2, "Attributes of the Image Object"

3. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

4. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

C.1.4. Example Using the Animate Visual Object

Examples using the animate visual object can be found in $ENVISION/examples/animate/. The sim-
plest of these is as follows:

#include <envision.h>

/*
* This program does an animation sequence. The animation data

5-13

Xvimage Program Services Volume III - Chapter 5

* is read in, the animation visual object is created, the visual object
* is associated with the animation data, and the animation is run.
*/

void main(
int argc,
char *argv[])

{
kobject data_object;
xvobject animate;
char *filename = "sequence:baby";

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* allow different images to be used, as in "% example sequence:bush" */
if (argc > 1)

filename = argv[1];

/* create data object from the input file */
data_object = kpds_open_input_object(filename);

/* give it a colormap to make it look pretty */
kcolor_set_attribute(data_object, KCOLOR_MAP_AUTOCOLOR, KRGB_SPIRAL);

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* create the animate object. Set the animate object to operate on

* the data object representing the input file, set the update time,
* the animation control and the animation direction. Note that
* the XVW_ANIMATE_DIRECTION attribute is an "action attribute"; setting
* it to KANIMATE_DIRECTION_FORWARD has the effect of starting the
* animation in a forward direction.

*/
animate = xvw_create_animate(NULL, "animate");
xvw_set_attributes(animate,

XVW_ANIMATE_DIRECTION, KANIMATE_DIRECTION_FORWARD,
XVW_IMAGE_IMAGEOBJ, data_object,
XVW_ANIMATE_UPDATETIME, 0.2,
XVW_ANIMATE_CONTROL, KANIMATE_CONTROL_AUTOREVERSE,
NULL);

/* display & run */
xvf_run_form();

}

C.2. The Image Object

5-14

Xvimage Program Services Volume III - Chapter 5

Figure 2: An image object is used to display a xray showing a cross-section of the human body. The
internal menuforms of the image object (not shown here) allow the user to control the x and y position of
the image window (for use with large images) as well as the image that is displayed.

C.2.1. xvw_create_image() — create an image object

Synopsis
xvobject xvw_create_image(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the image object (for use in app-defaults files, etc)

Returns
The image object on success, NULL on failure

Description
The image visual object provides a mechanism with which to easily display an image. If the input file
has an associated colormap, that colormap will be used to display the image.

8 bit and 24 bit displays are fully supported by the image object; monochrome and 4 bit displays may
be used but are not recommended.

Bit images, greyscale images, and RGB images are also supported. The image object is completely
flexible as to the data type of the image data; all data types, including signed and unsigned bit, byte,
short, int, float, double, and complex data types are supported.

The image object will react to changes in the input image; that is, if the contents of the input image
change, the image object will immediately update to display the new image.

5-15

Xvimage Program Services Volume III - Chapter 5

The image object supports the reading/writing of a variety of file formats, including:

Viff (VisiQuest 1.0.5 format)
Kdf (VisiQuest 2.1 data format)
Gdbm (VisiQuest 2.0 gdbm format)
Portable Any Map (PNM) format (including PPM, PGM, etc)
ASCII format
X Bitmap (XBM) format
X Pixel Map (XPM) format
X Window Dump (XWD) format
Application Visualization System (AVS) format

In addition to those listed above, the following formats are supported for write only:

Encapsulated PostScript (eps) format

In addition to those listed above, the following formats are supported for read only:

Raw (headerless) format

In the future, we also hope to support a number of additional formats, including:

Tagged Image File Format (TIFF)

C.2.2. Attributes of the Image Object

Summary of Image Attributes

Attribute Description

XVW_IMAGE_BACKING This attribute allows you set image backing store on (TRUE) or off

(FALSE). Turning image backing store on causes that the image to be

used as the background pixmap for the image display window. Image

backing store allows you to drag annotations across an image, while

reducing the annoying flicker that occurs as the refresh mechanism

refreshes the parto of the image over which the annotation is being

dragged. Be aw are, however, that turning image backing store on

implies an expensive operation every time the image itself is updated.

Thus, you would not want to turn on backing store for an animation, or

in any other circumstance when the image in question is going to be

frequently updated.

5-16

Xvimage Program Services Volume III - Chapter 5

Summary of Image Attributes

Attribute Description

XVW_IMAGE_BANDNUM This is the band number of the data object which contains the image to

be displayed. By default, band 0 (the first image) is displayed.

XVW_IMAGE_BAND_DIMENSIONS This mask attribute dictates how the total number of displayable frames

in the data object should be computed. The values are or’d in as

desired. For example, if bands are sequenced with respect to depth and

time:

int mask;

mask = KIMAGE_DEPTH | KIMAGE_TIME;

xvw_set_attribute(imageobj,

XVW_IMAGE_BAND_DIMENSIONS, mask);

Note that use of this attribute implies foreknowledge about the dimen-

sionality of the data to be displayed.

XVW_IMAGE_BAND_MAXNUM The maximum index of the bands available in the currently displayed

image; ie, the number of bands computed for the data, given the value

of XVW_IMAGE_BAND_DIMENSIONS .

XVW_IMAGE_CLIPFILE The name of a file containing a clip mask may be specified using this

attribute; the default is NULL. Note that this attribute is mutually

exclusive with XVW_IMAGE_CLIPOBJ; use one or the other, not both.

See the explanation of XVW_IMAGE_CLIPOBJ for more details on the

clip mask.

XVW_IMAGE_CLIPOBJ A clip mask is used to obscure portions of the displayed image; if

desired, this data object (kobject) attribute can be used to set a clip

mask for the image. When an image is used as a clip mask for the dis-

played image, the only part of the image that will appear normally is

that part defined by the pixels in the clip mask image that have a value

of (1). All other parts of the current image will appear in the back-

ground color of the image window. Note that ONLY images of data

type bit can be used as clip masks; if the input image to be used as a

clip mask is not of type bit, it will be internally converted to type bit,

without prompting or warning, before it is used. Note that this conver-

sion will not affect the original file in any way. If a clip mask currently

being used is no longer desired, set this attribute back to NULL. Note

that this attribute is mutually exclusive with XVW_IMAGE_CLIPFILE;

use one or the other, not both.

XVW_IMAGE_COLORMAPFILE The name of a file containing the desired colormap may be specified

using this attribute; the default is NULL. Note that this attribute is

mutually exclusive with XVW_IMAGE_COLORMAPOBJ; use one or the

other, not both. See the explanation of XVW_IMAGE_COLORMAPOBJ for

more details on the color map.

5-17

Xvimage Program Services Volume III - Chapter 5

Summary of Image Attributes

Attribute Description

XVW_IMAGE_COLORMAPOBJ This attribute allows the assignment of a different color map to the

image being displayed, other than the colormap stored with the image.

The attribute expects a data object (kobject) containing a color map,

and replaces the displayed image’s color map with the new color map.

Note that this attribute is mutually exclusive with XVW_IMAGE_COL-

ORMAPFILE; use one or the other, not both.

XVW_IMAGE_COMPLEX_CONVERT Only relevant if complex images are to be displayed, this attribute maps

to the polymorphic data services KPDS_VALUE_COMPLEX_CONVERT

attribute. It specifies how complex data should be converted in prepara-

tion for display as an image. See Chapter 3 of Programming Services

Manual Volume I, "Math Services" for explanations of the various set-

tings.

XVW_IMAGE_IMAGEFILE Specifies the name of the file containing the image to be displayed.

Note that this attribute is mutually exclusive with XVW_IMAGE_IMA-

GEOBJ; use one or the other, not both.

XVW_IMAGE_IMAGEOBJ This is the data object (kobject) containing the image to be displayed.

Note that this attribute is mutually exclusive with XVW_IMAGE_IMAGE-

FILE; use one or the other, not both.

XVW_IMAGE_OVERLAYFILE The name of a file containing an overlay image may be specified using

this attribute; the default is NULL. Note that this attribute is mutually

exclusive with XVW_IMAGE_OVERLAYOBJ; use one or the other, not

both. See the explanation of XVW_IMAGE_OVERLAYOBJ for more

details on the overlay image.

XVW_IMAGE_OVERLAYOBJ Under construction...

XVW_IMAGE_PIXEL Corresponding to the current image value, as indicated by

XVW_IMAGE_VALUE , this is the pixel value that was actually allocated

for that particular image data value.

XVW_IMAGE_REDISPLAY This state variable attribute causes the currently displayed image to be

redisplayed. Use of this attribute may be appropriate after making a

deliberate change to the image data of the data object being displayed.

5-18

Xvimage Program Services Volume III - Chapter 5

Summary of Image Attributes

Attribute Description

XVW_IMAGE_RELOAD When set to TRUE, this attribute causes the image data to be re-read

from the associated data object; the data is then redisplayed.

Use of this attribute is useful when displaying images with large images

(large enough to require the use of a pan icon) that also have a large

number of image values. When displaying such images on screens that

are less than 24 bit, the limitation of the number of colorcells available

for allocation on the screen can cause difficulties in realistically dis-

playing the colors in the image.

If the image being displayed has more values than can be accomodated

by the screen, then some image values must be mapped to appear as the

same pixel as other image values. If the image is small, or the number

of image values is not much greater than that which can be displayed on

the screen being used, there is not much that can be done.

However, consider the situation of a large image that cannot be dis-

played in its entirety, and furthermore containing a much greater num-

ber of image values than can be displayed on the current screen, not all

of which appear in every region of the image. The displayed result will

be most acceptable for the region of the image was loaded first, since

the image values in that region of the image will have the greatest

chance of getting unique pixel values allocated for them. However,

other regions of the image with a large number of data values that differ

from the values of the first region may suffer from the effect of having a

large number of data values all being mapped to the same pixel value.

Such situations can be rectified by allowing the currently region to be

re-read from scratch, causing the color allocation process to be redone,

and the current region being allowed to commandeer all the available

pixel values.

XVW_IMAGE_ROI If this action attribute is set, then the region of interest contained in the

data object specified will be inserted into the displayed image. Note

that the polymorphic data services attribute KPDS_SUBOBJECT_POSI-

TION may be set on the data object to specify where in the image the

region of interest is to be inserted. If the KPDS_SUBOBJECT_POSITION

attribute is not set in the data object, then the user will be interactively

prompted to indicate where the region of interest is to be placed.

If a get attribute procedure is done, then the user will be interactively

prompted to specify the desired region of interest, and the region of

interest will be stored in the specified data object. The KPDS_SUBOB-

JECT_POSITION will be set on the resulting data object, to indicate the

position of origination in the displayed image.

5-19

Xvimage Program Services Volume III - Chapter 5

Summary of Image Attributes

Attribute Description

XVW_IMAGE_ROI_MULTIBAND When the XVW_IMAGE_ROI attribute is used to extract a region of inter-

est, this attribute specifies whether the shape of the ROI should extract

the present band or all bands within the ROI extent. of multiband being

TRUE, all bands within the ROI will be extracted, otherwise only the

current displayed band is extracted.

XVW_IMAGE_ROI_MULTIPLE When the XVW_IMAGE_ROI attribute is used to extract a region of inter-

est, this attribute specifies whether multiple ROIs should be extracted.

ROI’s may be rectangular, polygonal, or circular. In the case of multi-

ple ROIs being TRUE, a single data object will be passed back with the

mask set indicating which ROI belongs to which. So for the first roi,

the mask will be set to 1. For the second roi, the mask will be set to set

to 2, and so forth. If multiple ROIs is set to FALSE then a binary mask

will be created, using 0’s and 1’s to represent which bits in the mask are

valid for the single roi.

XVW_IMAGE_ROI_POLICY When the XVW_IMAGE_ROI attribute is used to extract a region of inter-

est, this attribute specifies whether the ROI is defined by the region

inside the shape, by the region outside the shape, or by the outline of

the shape itself.

XVW_IMAGE_ROI_PRESENTATION When the XVW_IMAGE_ROI attribute is used to extract a region of inter-

est, this attribute specifies whether the ROI should be handed back as a

signal, image, or surface. If the roi is defined as a signal, then it can be

displayed using the 2D plotting routines. If the roi is extracted as an

image, then the roi can be displayed using the image display routines.

And finally, if extracted as a surface, the roi can be displayed using the

3D plotting routines.

XVW_IMAGE_ROI_SHAPE When the XVW_IMAGE_ROI attribute is used to extract or insert a region

of interest, this attribute specifies the shape of the ROI. ROI’s may be

rectangular, polygonal, or circular.

XVW_IMAGE_SAVEIMAGE This action attribute (use only with xvw_set_attribute(s)) allows you to

write out the currently displayed image. Simply provide a filename for

the image to be saved.

XVW_IMAGE_UPDATE_CALLBACK If desired, a callback may be installed on the image object that will be

fired each time a new filename is input to the image object for display.

The filename will be passed in as the call_data; cast this parameter to

an integer before using, as in:

kchar *filename = (char *) call_data;

XVW_IMAGE_VALUE This attribute is the image data value (cast to double) at the current

location of the pointer in the image. Note that the current location of

the pointer in the image can be obtained using XVW_IMAGE_XPOSI-

TION and XVW_IMAGE_YPOSITION .

XVW_IMAGE_XMAGNIFY The image x magnification factor specifies the amount in which to mag-

nify the image in the horizontal direction. The magnification is double

which if greater than 1.0 will enlarge the image; however, if less than

1.0 will shrink the image.

5-20

Xvimage Program Services Volume III - Chapter 5

Summary of Image Attributes

Attribute Description

XVW_IMAGE_XOFFSET The image x offset specifies the horizontal offset within the image of

the image display window. Together, the x offset and y offset specify

the upper left corner portion of the image that appears in the display

window. For small images which fit entirely within the image display

window, this will always be (0,0); however, for large images that must

use a pan icon because the image will not fit entirely within the image

window, the x offset may be any value from 0 to (width of image -

image display window width).

XVW_IMAGE_XPOSITION The x position reflects the current horizontal pointer position within the

image. The x position is corrected to take into account the image offset

(if any). Thus, regardless of whether or not a large image with a pan

icon is being displayed, and a pan icon has been used to change the por-

tion of the image that appears in the image window, the position

returned will be the position of the pointer within the image as a whole

(world coordinates), as opposed to the position of the pointer within the

actual window in which the image is being displayed (device coordi-

nates). Getting the value of this attribute is how to obtain the current

location of the pointer in the image; setting the value of this attribute

will cause any objects subordinate to the image (such as zoom, posi-

tion, etc) to update their values to the new position.

XVW_IMAGE_YMAGNIFY The image x magnification factor specifies the amount in which to mag-

nify the image in the vertical direction. The magnification is double

which if greater than 1.0 will enlarge the image; however, if less than

1.0 will shrink the image.

XVW_IMAGE_YOFFSET The image y offset specifies the vertical offset within the image of the

image display window. Together, the x offset and y offset specify the

upper left corner portion of the image that appears in the display win-

dow. For small images which fit entirely within the image display win-

dow, this will always be (0,0); however, for large images that must use

a pan icon because the image will not fit entirely within the image win-

dow, the y offset may be any value from 0 to (height of image - image

display window height).

XVW_IMAGE_YPOSITION The y position reflects the current vertical pointer position within the

image. See the explanation of XVW_IMAGE_XPOSITION for more

details.

Descriptions of Image Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_IMAGE_BACKING

(imageBacking)

int TRUE TRUE/FALSE

5-21

Xvimage Program Services Volume III - Chapter 5

Descriptions of Image Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_IMAGE_BANDNUM

(N/A)

int 0 0 < bandnum < # bands in image

XVW_IMAGE_BAND_DIMENSIONS

(N/A)

int KIMAGE_ELEMENTS |

KIMAGE_DEPTH |

KIMAGE_TIME

Any combination of: KIMAGE_ELE-

MENTS |

KIMAGE_DEPTH |

KIMAGE_TIME

XVW_IMAGE_BAND_MAXNUM

(N/A)

int 0 0 to (number of bands computed - 1).

XVW_IMAGE_CLIPFILE

(N/A)

char * NULL valid name of input file containing clip

mask

XVW_IMAGE_CLIPOBJ

(N/A)

kobject NULL valid data object defining clip maks

XVW_IMAGE_COLORMAPFILE

(N/A)

char * NULL valid name of input file containing col-

ormap

XVW_IMAGE_COLORMAPOBJ

(N/A)

kobject NULL valid data object defining colormap

XVW_IMAGE_COMPLEX_CONVERT

(imageComplexConvert)

int KLOGMAGP1 AccuSoftEAL

KIMAGINARY

KPHASE

KMAGNITUDE

KLOGMAGP1

KLOGMAG

KLOGMAGSQP1

KLOGMAGSQ

KMAGSQ

XVW_IMAGE_IMAGEFILE

(N/A)

char * NULL valid name of input file containing image

to display

XVW_IMAGE_IMAGEOBJ

(N/A)

kobject NULL valid data object defining image to display

XVW_IMAGE_OVERLAYFILE

(N/A)

char * NULL valid name of input file containing overlay

image

XVW_IMAGE_OVERLAYOBJ

(N/A)

kobject NULL valid data object defining an overlay

image

XVW_IMAGE_PIXEL

(N/A)

unsigned

long

0 pixel value

XVW_IMAGE_REDISPLAY

(N/A)

int FALSE TRUE/FALSE

XVW_IMAGE_RELOAD

(N/A)

int FALSE TRUE/FALSE

XVW_IMAGE_ROI

(N/A)

kobject NULL valid data object

5-22

Xvimage Program Services Volume III - Chapter 5

Descriptions of Image Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_IMAGE_ROI_MULTIBAND

(imageRoiMultiband)

int TRUE TRUE/FALSE

XVW_IMAGE_ROI_MULTIPLE

(imageRoiMultiple)

int FALSE TRUE/FALSE

XVW_IMAGE_ROI_POLICY

(imageRoiPolicy)

int KIMAGE_ROI_INSIDE KIMAGE_ROI_INSIDE

KIMAGE_ROI_OUTLINE

KIMAGE_ROI_OUTSIDE

XVW_IMAGE_ROI_PRESENTATION

(imageRoiPresentation)

int KIMAGE_ROI_IMAGE KIMAGE_ROI_SIGNAL

KIMAGE_ROI_IMAGE

KIMAGE_ROI_SURFACE

XVW_IMAGE_ROI_SHAPE

(imageRoiShape)

int KIMAGE_ROI_RECTANGLE KIMAGE_ROI_RECTANGLE

KIMAGE_ROI_POLYLINE

KIMAGE_ROI_CIRCLE

KIMAGE_ROI_ELLIPSE

KIMAGE_ROI_LINE

KIMAGE_ROI_FREEHAND

XVW_IMAGE_SAVEIMAGE

(N/A)

char * NULL filename for saved image

XVW_IMAGE_UPDATE_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_IMAGE_VALUE

(N/A)

double 0.0 pixel value

XVW_IMAGE_XMAGNIFY

(imageXmagnify)

double 1.0 any value greater than 0.0

XVW_IMAGE_XOFFSET

(imageXoffset)

int -1 -1 <= value <= image width

XVW_IMAGE_XPOSITION

(N/A)

int N/A 0 =< value <= image width

XVW_IMAGE_YMAGNIFY

(imageYmagnify)

double 1.0 any value greater than 0.0

XVW_IMAGE_YOFFSET

(imageYoffset)

int -1 -1 <= value <= image height

XVW_IMAGE_YPOSITION

(N/A)

int N/A 0 =< value <= image height

C.2.3. Complete Resource Set of the Image Object

The inheritance tree of the image object is as follows:

manager -> graphics -> color -> image

5-23

Xvimage Program Services Volume III - Chapter 5

Accordingly, the complete resource set for the image object includes:

1. The image attribute resource set, given above

2. The color attribute resource set, given in Section B, "The Color Attributes"

3. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

4. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

C.2.4. Example using the Image Object

A number of example programs using the image visual object can be found in $ENVISION/exam-
ples/image. The simplest of these is as follows.

#include <envision.h>

/*
* This simple introductory program creates a window with an image object; the
* image displayed is the mandril image, which is specified using the keyword
* syntax rather than the absolute path to the image.
*/

void main(
int argc,
char *argv[])

{
xvobject parent, image, position;

/* char *filename = "image:mandril-rgb";*/
char *filename = "image:ball";

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* Initialize the xvwidgets library */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror("test", "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* Create the image display. Since the parent is NULL, a toplevel
* window will be created automatically, and the image object placed

* inside. The xvw_set_attribute() call is used to specify the image
* file to be displayed.

*/
parent = xvw_create_manager(NULL, "parent");

image = xvw_create_image(parent, "image");
xvw_set_attribute(image, XVW_IMAGE_IMAGEFILE, filename);

position = xvw_create_position(parent, "position");

5-24

Xvimage Program Services Volume III - Chapter 5

xvw_set_attributes(position,
XVW_POSITION_FILENAME, filename,
XVW_BELOW, image,
XVW_LEFT_OF, NULL,
XVW_RIGHT_OF, NULL,
NULL);

/* display & run; there is no way to exit the program but ˆC */
xvf_run_form();

}

C.3. The ImageIcon Object

Figure 3: An image icon object is used to display color mandril as an icon. The internal menuforms of
the image icon object allow the user to control the icon size as well as the image that is displayed.

C.3.1. xvw_create_imageicon() — create a imageicon object

Synopsis
xvobject xvw_create_imageicon(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the imageicon object (for use in app-defaults files, etc)

Returns
Returns the created imageicon xvobject, or NULL upon failure

5-25

Xvimage Program Services Volume III - Chapter 5

Description
The image icon visual object displays the image as an icon (a miniature, subsampled version of the
image).

C.3.2. Attributes of the ImageIcon Object

Summary of ImageIcon Attributes

Attribute Description

XVW_IMAGEICON_SIZE This integer value specifies the size of the icon in pixels. The image

icon size should always be used rather than setting width and height

separately; otherwise, the image may not be proportionally correct.

Descriptions of ImageIcon Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_IMAGEICON_SIZE

(imageiconSize)

int 100 value > 0

C.3.3. Complete Resource Set of the ImageIcon Object

The inheritance tree of the imageicon object is as follows:

manager -> graphics -> color -> image -> imageicon

Accordingly, the complete resource set for the imageicon object includes:

1. The imageicon attribute resource set, given above

2. The image attribute resource set, given in section C.2, "Attributes of the Image Object"

3. The color attribute resource set, given in Section B, "The Color Attributes"

4. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

5. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

5-26

Xvimage Program Services Volume III - Chapter 5

C.3.4. Example using the ImageIcon Visual Object

An example program using the imageicon visual object can be found in $ENVISION/examples/imgi-
con/1.create_imgicon. This program is as follows.

#include <envision.h>

/*
* This simple program creates an imageicon object from the lizard image.
*/

void main(
int argc,
char *argv[])

{
xvobject imageicon;
char *filename = "image:mandril";

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* Initialize the xvwidgets lib. */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create the image icon with a size of (75 x 75) pixels */
imageicon = xvw_create_imageicon(NULL, "imageicon");
xvw_set_attributes(imageicon,

XVW_IMAGEICON_SIZE, 50,
XVW_IMAGE_IMAGEFILE, filename,
NULL);

/* display & run; there is no way to exit the program but ˆC */
xvf_run_form();

}

C.4. The PanIcon Object

Figure 4: A pan icon allows the user to pan around an image that is bigger than the area in which it is dis-
played. This pan icon is panning on the "ball" image ($SAMPLEDAT A/data/images/ball.xv, shorthand
"image:ball").

5-27

Xvimage Program Services Volume III - Chapter 5

C.4.1. xvw_create_panicon() — create a panicon object

Synopsis
xvobject xvw_create_panicon(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the panicon object (for use in app-defaults files, etc)

Returns
Returns the panicon object, or NULL upon failure

Description
A panicon object provides a mechanism with which to roam around in an image which is too large to
be accomodated by the image object in which it is displayed. Thus, the panicon object must be used in
conjunction with an image object on which it will pan.

Note that the XVW_IMAGE_IMAGEOBJ attribute is used to specify the data object on which the pani-
con should pan; this should be the same data object as the one displayed in the image object.

The panicon object will not be mapped unless it is needed; a created panicon object will remain
"invisible" if the image being displayed is small enough to fit within the image object. Thus, if an
application using an image object expects to ever receive a request to display an image which is larger
than the image object size, a pan icon object should always be created; it will not appear unless it is
necessary.

C.4.2. Attributes of the PanIcon Object

Summary of PanIcon Attributes

Attribute Description

5-28

Xvimage Program Services Volume III - Chapter 5

Summary of PanIcon Attributes

Attribute Description

XVW_PANICON_CALLBACK If desired, a callback may be installed on the panicon object that will be

fired each time the user repositions the pan box in the pan icon. Note

that no call_data is sent to the callback; to obtain the new position of

the pan box with respect to the displayed image, use

XVW_IMAGE_XOFFSET and XVW_IMAGE_YOFFSET on the associated

image object.

XVW_PANICON_HEIGHT The height in the displayed image defining the

region on which the panicon is panning (this region

is outlined by a white window in the panicon).

XVW_PANICON_SIZE The desired physical size of the pan icon. Note that the

actual size of the pan icon may be automatically modified

to preserve proportionality in the event that a non-square

image is displayed.

XVW_PANICON_VISIBILITY_CALLBACK PanIcon objects are created for use in conjunction with an image

object. When the image to be displayed is too large to fit in the window

of the image object, the pan icon will be mapped; when the image to be

displayed is small enough to fit entirely in the image window, the pan

icon is unmapped. that will be fired when the pan icon is mapped or

unmapped. A flag indicating whether the pan icon has just been

mapped or unmapped will be passed in as the call_data; cast this

parameter to an integer before using, as in:

int mapped = (int) call_data;

If the flag is TRUE, this implies that the pan icon has just been mapped

and is now visible. If the flag is FALSE, this implies that the pan icon

has just been unmapped and is no longer visible. This callback is for

use primarily so that the calling application can adjust its GUI if

desired, to accomodate the presence or absence of the pan icon.

XVW_PANICON_WIDTH The width in the displayed image defining the

region on which the panicon is panning (this region

is outlined by a white window in the panicon).

XVW_PANICON_XPOS The X position in the displayed image defining the

region on which the panicon is panning (this region

is outlined by a white window in the panicon).

XVW_PANICON_YPOS The Y position in the displayed image defining the

region on which the panicon is panning (this region

is outlined by a white window in the panicon).

Descriptions of PanIcon Attributes

Attribute Type Default Legal
(Resource Name) Values

5-29

Xvimage Program Services Volume III - Chapter 5

Descriptions of PanIcon Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PANICON_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_PANICON_HEIGHT

(N/A)

int 100 values > 50

XVW_PANICON_SIZE

(paniconSize)

int 100 values > 50

XVW_PANICON_VISIBILITY_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_PANICON_WIDTH

(N/A)

int 100 values > 50

XVW_PANICON_XPOS

(N/A)

int 0 0 - screen width

XVW_PANICON_YPOS

(N/A)

int 0 0 - screen height

C.4.3. Resource Set of the PanIcon Object

The inheritance tree of the panicon object is as follows:

manager -> graphics -> color -> image -> panicon

Accordingly, the complete set of attributes for the panicon object includes:

1. The panicon object attribute resource set, given above

2. The image object attribute resource set, given in Section C.2 "Attributes of the Image Object"

3. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

4. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

5-30

Xvimage Program Services Volume III - Chapter 5

C.4.4. Example Using the PanIcon Visual Object

Examples using the panicon visual object can be found in $ENVISION/examples/panicon/. The sim-
plest of these is as follows:

#include <envision.h>

/*
* This example displays a big image which needs a pan icon; the image and
* the pan icon are created in separate windows. Since NULL is specified as
* the parent for both the image and the pan icon, they are displayed in
* independent windows.
*
* NOTE: This example will crash on an OSF 3.2 architecture; there are
* points in the "clust:tmi" data set that result in a machine
* conversion problem in casting to double.
*/

static void image_update_cb PROTO((xvobject, kaddr, kaddr));
xvobject panicon;

void main(
int argc,
char *argv[])

{
kobject data_object;
xvobject image;
char *filename = "image:ball";
int w, h, d, t, e;
int desired_width = 810;
int desired_height = 760;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* If we input an image that is smaller than 2000 x 2000, scale it UP

* to that size, so that we will actually need a pan icon. The pan
* icon will not display unless it is needed; it is considered needed

* only when the image object is able to to display only a portion of
* it. In general, you *don’t* want to do this!

*/
data_object = kpds_open_object(filename, KOBJ_READ);

kpds_get_attribute(data_object, KPDS_VALUE_SIZE, &w, &h, &d, &t, &e);
w = kmax(w, desired_width);
h = kmax(h, desired_height);
kpds_set_attributes(data_object,

KPDS_VALUE_SIZE, w, h, d, t, e,
KPDS_VALUE_INTERPOLATE, KZERO_ORDER,
NULL);

image = xvw_create_image(NULL, "image");
xvw_set_attribute(image, XVW_IMAGE_IMAGEOBJ, data_object);

5-31

Xvimage Program Services Volume III - Chapter 5

/* add callback to update panicon when input file changes */
xvw_add_callback(image, XVW_IMAGE_UPDATE_CALLBACK,

image_update_cb, NULL);

/*
* create the pan icon; it will only be displayed when it is necessary;
* although in this program we have forced it to be necessary.

* note that setting the parent to NULL forces the pan icon to have
* a window that is independent from the window in which the image is
* displayed. more often, it is useful to have a single backplane
* hold both the image and the pan icon.

*/
panicon = xvw_create_panicon(image, "panicon");
xvw_set_attribute(panicon, XVW_IMAGE_IMAGEOBJ, data_object);

/* display & run; there is no way to exit the program but ˆC */
xvf_run_form();

}

/*
* callback to update panicon object and position object to operate on the
* new image when the image object’s internal menuform is used to input a
* new image.
*/

static void image_update_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
char *filename = (char *) call_data;
kobject data_object;

/*
* get data object from the modified file
*/
if ((data_object = kpds_open_object(filename, KOBJ_READ)) != NULL)
{

xvw_set_attribute(panicon, XVW_IMAGE_IMAGEOBJ, data_object);
kpds_close_object(data_object);

}

}

C.5. The Position Object

Figure 5: The position object tracks the movement of the pointer in an image object. Here, a position
object is located beneath an image object.

5-32

Xvimage Program Services Volume III - Chapter 5

C.5.1. xvw_create_position() — create a position object

Synopsis
xvobject xvw_create_position(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the position object (for use in app-defaults files, etc)

Returns
The position object on success, NULL on failure

Description
A position object is used to track movement of the pointer in an image; thus, it was designed to be used
in conjunction with an image object.

The position object displays values in an (X x Y) or (X x Y = Z) format, where X and Y display the
location of the pointer in the image object, and the optional Z is the pixel value of the image at that
location. When the latter format is used with an RGB image, the format is modified to be (X x Y = R
G B).

5-33

Xvimage Program Services Volume III - Chapter 5

C.5.2. Attributes of the Position Visual Object

Summary of Position Attributes

Attribute Description

XVW_POSITION_FILENAME A file containing the image on which the position object will track may

be specified directly using this attribute.

XVW_POSITION_OBJECT This is the data object (kobject) containing the image on which the

position object will track. Note that this attribute is mutually exclusive

with XVW_POSITION_FILENAME; use one or the other, not both.

XVW_POSITION_SHOW_VALUE If TRUE, the position object will display information in (X x Y = Z)

format, where X and Y display the location of the pointer in the data

object, and Z is the pixel value at that location. If FALSE, the position

object will simply display (X x Y) location information; the pixel value

will be omitted.

XVW_POSITION_UPDATEMODE The update mode attribute indicates when the position object is to

update the information which it displays. If set to KPOSI-

TION_UM_CONTINUOUS , the position object will continually update as

the pointer is moved across the image; if set to KPOSITION_UM_BUT-

TON_PRESS , the position object will not update until the mouse button

is pressed in the image object.

Descriptions of Position Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_POSITION_FILENAME

(N/A)

char * NULL valid input filename

XVW_POSITION_OBJECT

(N/A)

kobject NULL valid data object

XVW_POSITION_SHOW_VALUE

(positionShowValue)

int TRUE TRUE/FALSE

XVW_POSITION_UPDATEMODE

(positionUpdatemode)

int KPOSITION_UM_CONTINU-

OUS

KPOSITION_UM_CONTINUOUS

KPOSITION_UM_BUTTON_PRESS

C.5.3. Complete Resource Set of the Position Visual Object

The inheritance tree of the position object is as follows:

manager -> graphics -> string -> position

Accordingly, the complete resource set for the position object includes:

5-34

Xvimage Program Services Volume III - Chapter 5

1. The position attribute resource set, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

C.6. The PrintPixel Object

Figure 6: A printpixel object prints the pixel values in an image as the pointer is moved over the image.
If desired, the background color over which each pixel value is printed may appear in the color of the
pixel.

C.6.1. xvw_create_printpixel() — create a printpixel xvobject

Synopsis
xvobject xvw_create_printpixel(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the printpixel object (for use in app-defaults files, etc)

Returns
The printpixel xvobject on success, NULL otherwise

Description
A printpixel object provides a mechanism which will track pointer movement in an image object and

5-35

Xvimage Program Services Volume III - Chapter 5

print the values of the pixels in the area under the pointer. It was designed for use in conjunction with
an image object.

The printpixel object is made up of one or more (width x height) sets of label objects. The background
of each label is the color in which the pixel appears.

C.6.2. Attributes of the PrintPixel Object

Summary of PrintPixel Attributes

Attribute Description

XVW_PRINTPIXEL_CLIPFILE The name of a file containing a clip mask may be specified using this

attribute; the default is NULL. Note that this attribute is mutually

exclusive with XVW_PRINTPIXEL_CLIPOBJ; use one or the other, not

both. See the explanation of XVW_PRINTPIXEL_CLIPOBJ for more

details on the clip mask.

XVW_PRINTPIXEL_CLIPOBJ A clip mask is used to obscure portions of the displayed pixels; if

desired, this data object (kobject) attribute can be used to set a clip

mask for the data. When a clip mask is used with the printpixel object,

the only pixel values that will be displayed by the printpixel object will

be those that correspond to a pixel value of (1) in the clip mask. Pixels

corresponding to a value of (0) in the clip mask will not be displayed.

Note that ONLY images of data type bit can be used as clip masks; if

the input image to be used as a clip mask is not of type bit, it will be

internally converted to type bit, without prompting or warning, before it

is used. Note that this conversion will not affect the original file in any

way. If a clip mask currently being used is no longer desired, set this

attribute back to NULL. Note that this attribute is mutually exclusive

with XVW_PRINTPIXEL_CLIPFILE; use one or the other, not both.

XVW_PRINTPIXEL_DEPTH_OFFSET When the input data object has depth > 1, this attribute may be used to

specify the depth offset at which the pixel values are to be extracted

(the printpixel object always operates on a (width x height) region).

XVW_PRINTPIXEL_ELEMENTS_OFFSET When the input data object has elements > 1, this attribute may be used

to specify the elements offset at which the pixel values are to be

extracted (the printpixel object always operates on a (width x height)

region).

XVW_PRINTPIXEL_FILENAME The file containing the data object for which the pixel values are to be

displayed.

Note that this attribute is mutually exclusive with XVW_PRINT-

PIXEL_OBJECT; use one or the other, not both.

XVW_PRINTPIXEL_HEIGHT Specifies the number of pixel values that should be displayed in the ver-

tical direction on the printpixel display.

5-36

Xvimage Program Services Volume III - Chapter 5

Summary of PrintPixel Attributes

Attribute Description

XVW_PRINTPIXEL_OBJECT This is the data object (kobject) containing the image for which pixel

values are to be displayed. Note that this attribute is mutually exclusive

with XVW_PRINTPIXEL_FILENAME; use one or the other, not both.

XVW_PRINTPIXEL_SHOWCOLOR Indicates whether or not the color of the pixel under the pointer should

be displayed as the background color for the label object in which the

pixel values are displayed. When set to FALSE, the background will be

black.

XVW_PRINTPIXEL_TIME_OFFSET When the input data object has time > 1, this attribute may be used to

specify the time offset at which the pixel values are to be extracted (the

printpixel object always operates on a (width x height) region).

XVW_PRINTPIXEL_UPDATEMODE Indicates whether the printmapval display is to be updated continuously

as the pointer moves across the image, or not until the button is clicked

at a particular location in the image.

XVW_PRINTPIXEL_WIDTH Specifies the number of pixel values that should be displayed in the

horizontal direction on the printpixel display.

XVW_PRINTPIXEL_XPOSITION This is the X position in the image corresponding to the map value that

appears in the upper left hand corner of the printmapval grid.

XVW_PRINTPIXEL_YPOSITION This is the Y position in the image corresponding to the map value that

appears in the upper left hand corner of the printmapval grid.

Descriptions of PrintPixel Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PRINTPIXEL_CLIPFILE

(N/A)

char * NULL valid name of input file containing clip

mask

XVW_PRINTPIXEL_CLIPOBJ

(N/A)

kobject NULL valid data object defining clip maks

XVW_PRINTPIXEL_DEPTH_OFFSET

(N/A)

int 0 0 < value < depth of data object value seg-

ment

XVW_PRINTPIXEL_ELEMENTS_OFFSET

(N/A)

int 0 value < number of elements in data object

value segment

XVW_PRINTPIXEL_FILENAME

(N/A)

char * NULL valid input filename

XVW_PRINTPIXEL_HEIGHT

(printpixelHeight)

int 9 1 <= height <= image height

XVW_PRINTPIXEL_OBJECT

(N/A)

kobject NULL valid data object

XVW_PRINTPIXEL_SHOWCOLOR

(printpixelShowcolor)

int FALSE TRUE/FALSE

XVW_PRINTPIXEL_TIME_OFFSET

(N/A)

int 0 value < time size of data object value seg-

ment

5-37

Xvimage Program Services Volume III - Chapter 5

Descriptions of PrintPixel Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PRINTPIXEL_UPDATEMODE

(printpixelUpdatemode)

int KPRINTPIXEL_UM_CONTIN-

UOUS

KPRINTPIXEL_UM_CONTINUOUS

KPRINTPIXEL_UM_BUTTONPRESS

XVW_PRINTPIXEL_WIDTH

(printpixelWidth)

int 7 1 <= width <= image width

XVW_PRINTPIXEL_XPOSITION

(N/A)

int 0 0 - image width

XVW_PRINTPIXEL_YPOSITION

(N/A)

int 0 0 - image height

C.6.3. Resource Set of the PrintPixel Object

The inheritance tree of the printpixel object is as follows:

manager -> graphics -> color -> printpixel

Accordingly, the complete resource set for the printpixel object includes:

1. The pr intpixel object attribute resource set, given above

2. The color attribute resource set, given in Section B, "The Color Attributes"

3. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

4. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

C.6.4. Example Using the PrintPixel Visual Object

Examples using the printpixel visual object can be found in $ENVISION/examples/color/print-
pixel/. The simplest of these is as follows:

#include <envision.h>

/*
* This program creates an image object, a position object to reflect the
* location of the mouse pointer in the image, and a printpixel object to
* print the values of the pixels surrounding that location.
*
* Note that you do NOT have to write an event handler to make the
* printpixel object update; the fact that we have created an image object
* using the same file for it’s data does the trick. The image object will
* recognise pointer motion within it, and cause the printpixel object (and
* the position object as well) to be updated automatically.

5-38

Xvimage Program Services Volume III - Chapter 5

*/
xvobject image, position, printpixel;
static void infile_cb PROTO((xvobject, kaddr, kaddr));

void main(
int argc,
char **argv,
char **envp)

{
kobject object;
char *filename = "image:mandril";
xvobject parent, infile;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* create a data object from the information in the image file */
object = kpds_open_input_object(filename);

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create a manager to contain printpixel & position objects */
parent = xvw_create_manager(NULL, "parent");

/*
* create the image object below the inputfile object,
* and associate it with the desired filen
*/
image = xvw_create_image(parent, "image");
xvw_set_attribute(image, XVW_IMAGE_IMAGEOBJ, object);

/*
* create the position object in the center below the image;
* associate it with the same data using XVW_POSITION_OBJECT.
*/
position = xvw_create_position(parent, "position");
xvw_set_attributes(position,

XVW_BELOW, image,
XVW_LEFT_OF, image,
XVW_RIGHT_OF, image,
XVW_POSITION_OBJECT, object,
NULL);

/*
* create an inputfile object so we can enter a new filename
*/
infile = xvw_create_inputfile(parent, "infile");
xvw_set_attributes(infile,

XVW_BELOW, position,
XVW_TACK_EDGE, KMANAGER_TACK_HORIZ,
XVW_INPUTFILE_FILENAME, filename,
NULL);

xvw_add_callback(infile, XVW_INPUTFILE_CALLBACK, infile_cb, NULL);

5-39

Xvimage Program Services Volume III - Chapter 5

/*
* create the printpixel object in an independent window,

* associate it with the same data using XVW_PRINTPIXEL_OBJECT.
* want 9 data pixel values in each row, 11 in each column.
*/
parent = xvw_create_manager(NULL, "printpixel_parent");
printpixel = xvw_create_printpixel(parent, "printpixel");
xvw_set_attributes(printpixel,

XVW_PRINTPIXEL_OBJECT, object,
XVW_PRINTPIXEL_WIDTH, 9,

XVW_PRINTPIXEL_HEIGHT, 11,
NULL);

/* display & run the program */
xvf_run_form();

}

/*
* callback to allow user to enter new filename
*/

static void infile_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
char *filename;
kobject data_object;

xvw_get_attribute(object, XVW_INPUTFILE_FILENAME, &filename);
data_object = kpds_open_input_object(filename);

xvw_set_attribute(image, XVW_IMAGE_IMAGEFILE, filename);
xvw_set_attribute(position, XVW_POSITION_FILENAME, filename);
xvw_set_attribute(printpixel, XVW_PRINTPIXEL_FILENAME, filename);

/*
xvw_set_attribute(image, XVW_IMAGE_IMAGEOBJ, data_object);
xvw_set_attribute(position, XVW_POSITION_OBJECT, data_object);
xvw_set_attribute(printpixel, XVW_PRINTPIXEL_OBJECT, data_object);

*/

}

C.7. The Zoom Object

5-40

Xvimage Program Services Volume III - Chapter 5

Figure 7: The zoom object with its internal menuform displayed. Here, the zoom object is used to zoom
in on the "lizard.xv" image with a zoom factor of 4.0.

C.7.1. xvw_create_zoom() — create a zoom object

Synopsis
xvobject xvw_create_zoom(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the zoom object (for use in app-defaults files, etc)

Returns
The zoom object on success, NULL on failure

Description
The zoom object provides a zoom window which is used to zoom in on an image. It was designed for

5-41

Xvimage Program Services Volume III - Chapter 5

use in conjunction with an image object.

The zoom factor can be set as desired. The zoom object may be set to update on either Button Press or
Pointer Motion events.

C.7.2. Attributes of the Zoom Object

Summary of Zoom Attributes

Attribute Description

XVW_ZOOM_FACTOR This double value specifies the zoom factor, where values larger than

one cause the zoom object to zoom in on the image, while values less

than one cause the zoom object to zoom out on the image. For exam-

ple, a value of 2.0 doubles the size of the image, while a value of 0.5

shrinks the image by half. The zoom factor is intentionally a double

precision value; this means that in the case of pixel replication, pixels

are rounded to their nearest location. This also implies that under cer-

tain circumstances, the zoom will not appear to stretch evenly over the

entire image.

XVW_ZOOM_INTERPOLATE Sets the type of interpolation. Currently, this can only be

KZERO_ORDER, which is pixel replication.

XVW_ZOOM_LOCATIONMARKER This attributes specifies the marker (cursor) which will be used to mark

the center of the zoom window. Typically the zoom position should

always be in the center of the zoom window, but if center image is

FALSE, then the zoom object will reposition the position. In this case

it is helpful to have an indicator that shows this position. The available

marker types include a cross, a box, and a dot (or none).

XVW_ZOOM_UPDATEMODE This attribute indicates the method with which the zoom window will

update. Available settings include: which does continuous update as

the pointer is moved across the image, and KZOOM_UM_BUT-

TON_PRESS , which updates only when the button is pressed at the

desired location.

XVW_ZOOM_XPOSITION This is the X position in the image at which the zoom window is

focused; the zoom cursor in the zoom window will reflect this (x,y)

position.

XVW_ZOOM_YPOSITION This is the Y position in the image at which the zoom window is

focused; the zoom cursor in the zoom window will reflect this (x,y)

position.

5-42

Xvimage Program Services Volume III - Chapter 5

Descriptions of Zoom Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_ZOOM_FACTOR

(zoomFactor)

double 8.0 value > 0.0

XVW_ZOOM_INTERPOLATE

(zoomInterpolate)

int KZERO_ORDER KZERO_ORDER

XVW_ZOOM_LOCATIONMARKER

(zoomLocationmarker)

int KZOOM_LM_BOX KZOOM_LM_NONE

KZOOM_LM_CROSS

KZOOM_LM_BOX

KZOOM_LM_CIRCLE

KZOOM_LM_DOT

XVW_ZOOM_UPDATEMODE

(zoomUpdatemode)

int KZOOM_UM_CONTINUOUS KZOOM_UM_CONTINUOUS

KZOOM_UM_BUTTON_PRESS

XVW_ZOOM_XPOSITION

(zoomXposition)

int 0 0 - image width

XVW_ZOOM_YPOSITION

(zoomYposition)

int 0 0 - image height

C.7.3. Complete Resource Set of the Zoom Object

The inheritance tree of the zoom object is as follows:

manager -> graphics -> color -> image -> zoom

Accordingly, the complete resource set for the zoom object includes:

1. The zoom attribute resource set, given above

2. The image attribute resource set, given in section C.2, "Attributes of the Image Object"

3. The color attribute resource set, given in Section B, "The Color Attributes"

4. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

5. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

C.7.4. Example Using the Zoom Object

Examples of programs using the zoom object can be found in $ENVISION/examples/zoom. One of the
simpler programs is as follows.

#include <envision.h>

5-43

Xvimage Program Services Volume III - Chapter 5

/*
* This program creates an image object which displays the ball image.
* Then, a zoom object is created, and is associated with the same information
* as the image object. Without installing any event handlers, the zoom
* object will automatically zoom in on the image displayed in the image object
* when the pointer is moved across the image, since they are both using the
* same data object.
*/

void main(
int argc,
char *argv[])

{
kobject object;
char *filename = "image:ball";
xvobject image, zoom, position, parent;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* allow different images to be used, as in "% example image:lizard" */
if (argc > 1)

filename = argv[1];

/* open the data object associated with the input image */
object = kpds_open_input_object(filename);

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* a manager will be the backplane for the image and position objects
*/
parent = xvw_create_manager(NULL, "parent");

/*
* create the image object; associate it with the data object

* representing the input file
*/
image = xvw_create_image(parent, "image");
xvw_set_attribute(image, XVW_IMAGE_IMAGEOBJ, object);

/*
* create the position object under the image object; have it

* use the same data object.
*/
position = xvw_create_position(parent, "position");
xvw_set_attributes(position,

XVW_BELOW, image,
XVW_POSITION_OBJECT, object,
XVW_LEFT_OF, NULL,
XVW_RIGHT_OF, NULL,
NULL);

/*

5-44

Xvimage Program Services Volume III - Chapter 5

* create the zoom object in an independant window.
* specify the associated image object to be the same data.

*/
zoom = xvw_create_zoom(NULL, "zoom");
xvw_set_attributes(zoom,

XVW_IMAGE_IMAGEOBJ, object,
XVW_ZOOM_FACTOR, 5.0,
XVW_ZOOM_LOCATIONMARKER, KZOOM_LM_CROSS,
XVW_MINIMUM_WIDTH, 200,
XVW_MINIMUM_HEIGHT, 200,
NULL);

/* display and run */
xvf_run_form();

}

D. Visual Objects Related to Colormaps

D.1. The ColorCell Object

Figure 8: The colorcell object is used to display the color and pixel value of one or more pixels in an
image.

D.1.1. xvw_create_colorcell() — create a colorcell xvobject

Synopsis
xvobject xvw_create_colorcell(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically

5-45

Xvimage Program Services Volume III - Chapter 5

name
a name for this particular instance of the colorcell object (for use in app-defaults files, etc)

Returns
The colorcell object on success, NULL on failure

Description
A colorcell visual object is used to display the color and the value of pixels in an image object; thus, it
is designed to be used in conjunction with an image object. It is comprised of a square area in which
the color of the pixel(s) are displayed. When a single pixel is associated with the colorcell object, the
numeric value of that pixel may also be shown. The colorcell object may be used simply to reflect the
color of one or more pixels in the image, or it may be used to control those colors.

D.1.2. Attributes of the Colorcell Visual Object

Summary of ColorCell Attributes

Attribute Description

XVW_COLORCELL_ADD Use of this write-only attribute adds the specified image data value

(pixel) to colorcell list (the list of pixels with which the colorcell is

associated). If XVW_COLORCELL_UPDATE_ONADD is set to TRUE, use

of this attribute will force the color in which a pixel value is displayed

to be the same as the color currently displayed by the colorcell object.

XVW_COLORCELL_BLUEVAL This attribute can be used to set the blue component of the color that is

displayed by the colorcell; by extension, this will identically affect the

color of the pixels in the image that are in the colorcell list.

XVW_COLORCELL_CLEAR This action attribute clears the colorcell list (the list of pixels with

which the colorcell is associated), so that the colorcell can subsequently

be associated with new pixel value(s).

XVW_COLORCELL_DELETE Use of this write-only attribute deletes the image data value (pixel)

from the colorcell list (the list of pixels with which the colorcell is

associated). If XVW_COLORCELL_RESTORE_ONDELETE is set to TRUE,

use of this attribute will restore the pixel to its original color in which it

appeared before it was added to the index list with XVW_COLOR-

CELL_ADD.

XVW_COLORCELL_GREENVAL This attribute can be used to set the green component of the color that

is displayed by the colorcell; by extension, this will identically affect

the color of the pixels in the image that are in the colorcell list.

5-46

Xvimage Program Services Volume III - Chapter 5

Summary of ColorCell Attributes

Attribute Description

XVW_COLORCELL_INDEX This attribute is the image data value (pixel) with which to associate the

colorcell object. The colorcell object will display the color in which

that pixel appears on the screen, and may display the pixel value as

well.

XVW_COLORCELL_INDEXLIST This read-only attribute allows you to obtain the array of image data

values (pixels) currently associated with the colorcell object (ie, those

pixels currently in the colorcell list). The array obtained will contain

the pixel values which appear in the color reflected in the colorcell

object.

XVW_COLORCELL_INDEXNUM This is read-only attribute allows you to obtain the number of image

data values (pixels) currently associated with the the colorcell object.

Note that this is the size of the array returned by XVW_COLOR-

CELL_INDEXLIST .

XVW_COLORCELL_REDVAL This attribute can be used to set the red component of the color that is

displayed by the colorcell; by extension, this will identically affect the

color of the pixels in the image that are in the colorcell list.

XVW_COLORCELL_RESTORE This action attribute restores the pixels in the colorcell list to the the

original colors in which they appeared in before they added to the col-

orcell list using XVW_COLORCELL_ADD .

XVW_COLORCELL_RESTORE_ONDELETE When this attribute is set to TRUE, the colorcell object will force pixels

in the associated image to be immediately restored to their original

color when they are deleted from the pixel list using XVW_COLOR-

CELL_DELETE .

XVW_COLORCELL_SAVE_COLOR Use of this action attribute saves the current color of the colorcell,

whatever that may be, so that if the color is subsequently changed, and

then restored, this will be the color that is restored. Note that this saved

color will be restored if the XVW_COLORCELL_RESTORE action attribute

is used, or if the XVW_COLORCELL_DELETE attribute is used to delete

an index from the colorcell list when the XVW_COLOR-

CELL_RESTORE_ONDELETE attribute is set to TRUE.

Use of this action attribute is useful in making sure that restored colors

will be correct if the any of the following attributes have been set on the

object on which the colorcell has had the XVW_COLOR_COLOROBJ

XVW_COLORCELL_SHOWINDEX When this attribute is set to TRUE, the colorcell object will display the

pixel value with which it is associated; when it is set to FALSE, the

colorcell object consists of a solid block of color. In general, when the

colorcell object is associated with multiple pixel values, it makes more

sense to set this attribute to FALSE; however, if it is set to TRUE, the

colorcell widget will display the first pixel value in the pixel list.

XVW_COLORCELL_UPDATE This action attribute updates the colors of the pixels in the colorcell

list, according to the color currently displayed by the colorcell.

5-47

Xvimage Program Services Volume III - Chapter 5

Summary of ColorCell Attributes

Attribute Description

XVW_COLORCELL_UPDATE_ONADD When this attribute is set to TRUE, the colorcell object will force pixels

in the associated image to immediately appear in the color displayed by

the colorcell when they are added to the pixel list using XVW_COLOR-

CELL_ADD .

Descriptions of ColorCellAttributes

Attribute Type Default Legal
(Resource Name) Values

XVW_COLORCELL_ADD

(N/A)

int N/A valid pixel value of the displayed data

object

XVW_COLORCELL_BLUEVAL

(N/A)

int 0 0-255

XVW_COLORCELL_CLEAR

(N/A)

int N/A (action

attribute)

TRUE

XVW_COLORCELL_DELETE

(N/A)

int N/A (action

attribute)

valid pixel value of the displayed data

object

XVW_COLORCELL_GREENVAL

(N/A)

int 0 0-255

XVW_COLORCELL_INDEX

(N/A)

int none any valid image pixel value

XVW_COLORCELL_INDEXLIST

(N/A)

int * N/A integer array of image pixel values

XVW_COLORCELL_INDEXNUM

(N/A)

int N/A size of the array specified by XVW_COLOR-

CELL_INDEXLIST

XVW_COLORCELL_REDVAL

(N/A)

int 0 0-255

XVW_COLORCELL_RESTORE

(N/A)

int N/A (action

attribute)

TRUE

XVW_COLORCELL_RESTORE_ONDELETE

(colorcellRestoreOndelete)

int FALSE TRUE/FALSE

XVW_COLORCELL_SAVE_COLOR

(N/A)

int N/A TRUE

XVW_COLORCELL_SHOWINDEX

(colorcellShowindex)

int TRUE TRUE/FALSE

XVW_COLORCELL_UPDATE

(N/A)

int N/A (action

attribute)

TRUE

XVW_COLORCELL_UPDATE_ONADD

(colorcellUpdateOnadd)

int FALSE TRUE/FALSE

5-48

Xvimage Program Services Volume III - Chapter 5

D.1.3. Complete Resource Set of the ColorCell Visual Object

The inheritance tree of the colorcell object is as follows:

manager -> graphics -> color -> colorcell

Accordingly, the complete resource set for the colorcell object includes:

1. The colorcell attribute resource set, given above

2. The color attribute resource set, given in Section B, "The Color Attributes"

3. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

4. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

D.1.4. Example using the ColorCell Visual Object

Example programs using the colorcell visual object can be found in $ENVISION/exam-
ples/color/colorcell. The simplest of these is as follows.

#include <envision.h>

void update_colorcell PROTO((xvobject, kaddr, XEvent *, int *));

/*
* This program creates an image object which displays the kitten image.
* Then, a colorcell object is created. A colorcell object is associated with
* a pixel value in an image; it is a box filled with the color in which
* the pixel appears, and labelled with the pixel value.
*
* An event handler is installed which allows you to click the mouse in
* the image; the colorcell object will be updated with the color and
* value of the pixel on which the mouse was clicked.
*/

void main(
int argc,
char *argv[])

{
xvobject manager, image, colorcell, label;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

5-49

Xvimage Program Services Volume III - Chapter 5

/* Create a manager to parent the image and colorcell objects */
manager = xvw_create_manager(NULL, "manager");

/* create a 35x35 colorcell object in the upper right hand corner */
colorcell = xvw_create_colorcell(manager, "colorcell");
xvw_set_attributes(colorcell,

XVW_COLOR_COLORFILE, "image:kitten",
XVW_BELOW, NULL,
XVW_WIDTH, 35,
XVW_HEIGHT, 35,
XVW_LEFT_OF, NULL,
NULL);

/* put a label, just to be fancy */
label = xvw_create_label(manager, "label");
xvw_set_attributes(label,

XVW_LEFT_OF, colorcell,
XVW_ABOVE, colorcell,
XVW_BELOW, colorcell,
XVW_LABEL, "This is the colorcell object =>",

NULL);

/* create the image object below the colorcell; specify the image */
image = xvw_create_image(manager, "image");
xvw_set_attributes(image,

XVW_IMAGE_IMAGEFILE, "image:kitten",
XVW_BELOW, colorcell,
NULL);

/* add the event handler to update the colorcell */
xvw_add_event(image, ButtonPressMask | ButtonMotionMask,

update_colorcell, (kaddr)colorcell);

/* display & run */
xvf_run_form();

}

/*
* event handler to update the colorcell index
*/

void update_colorcell(
xvobject object,
kaddr clientData,
XEvent *event,
int *dispatch)

{
double value;
xvobject colorcell = (xvobject) clientData;

/* get the value of the pixel where the mouse was clicked */
xvw_get_attribute(object, XVW_IMAGE_VALUE, &value);

/* update the colorcell to reflect that pixel value */
xvw_set_attribute(colorcell, XVW_COLORCELL_INDEX, (int) value);

}

5-50

Xvimage Program Services Volume III - Chapter 5

D.2. The Palette Object

Figure 9: The palette object with its internal menuform displayed. Here, the palette object is used to dis-
play the color palette for the "ball.xv" using a the rectangular palette display type.

D.2.1. xvw_create_palette() — create a palette object

Synopsis
xvobject xvw_create_palette(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the palette object (for use in app-defaults files, etc)

Returns
The palette xvobject on success, NULL otherwise

Description
The palette visual object provides a visual display of the colors defined by a colormap. The colors may
be displayed as a grid of color cells, a color palette, or a color wheel.

Note that when an RGB image is displayed on an 8-bit screen, a 3-3-2 transformation is used in order
to convert the RGB image into an 8-bit representation. Because of this, the colors in the palette object
that are displayed in this situation will reflect the 3-3-2 map, and may not seem to correspond to the

5-51

Xvimage Program Services Volume III - Chapter 5

displayed image.

D.2.2. Attributes of the Palette Visual Object

Summary of Palette Attributes

Attribute Description

XVW_PALETTE_ADD Use of this write-only attribute adds the specified image data value

(pixel) to palette list (the list of pixels highlighted in the palette).

XVW_PALETTE_CALLBACK If desired, xvw_add_callback() or xvw_insert_callback()may be used to

install a callback on the palette object which will be fired when the user

selects a color cell from the palette object. When calling

xvw_add_callback(), pass this attribute directly, as in

xvw_add_callback(palette_object, XVW_PALETTE_CALLBACK,

palette_callback, client_data);

The index of the colorcell that was selected by the user is passed into

the callback as the call_data; this integer pointer must be cast correctly

before use. It is the responsibility of the palette callback to keep a list

of the color cells that have been selected (if this information will be

needed). The callback must also set the attributes

XVW_PALETTE_ADD to select (stipple) a color cell and

XVW_PALETTE_DELETE to un-select (un-stipple) a color cell. The

following code segment gives an example of a callback that might be

installed on a palette object:

static void test_callback(

xvobject palette,

kaddr client_data,

kaddr call_data)

{

static int *indexes = NULL;

static int index_num = 0;

int *indx = (int *) call_data;

if (karray_locate(indexes, KINT, *indx, index_num) == -1)

{

*indx);

*indx);

}

XVW_PALETTE_CLEAR This action attribute clears the palette list so that no pixels are high-

lighted in the palette.

5-52

Xvimage Program Services Volume III - Chapter 5

Summary of Palette Attributes

Attribute Description

XVW_PALETTE_DELETE Use of this write-only attribute deletes the image data value (pixel)

from the palette list (the list of pixels highlighted in the palette).

XVW_PALETTE_INDEXLIST This read-only attribute allows you to obtain the palette list (ie, those

data values (pixels) in the palette that are currently highlighted). By

default, there is no palette list (ie, no pixels in the palette are high-

lighted).

XVW_PALETTE_INDEXNUM This is read-only attribute allows you to obtain the number of image

data values (pixels) currently highlighted in the palette object. Note that

this is the size of the array returned by XVW_PALETTE_INDEXLIST .

XVW_PALETTE_TYPE This attribute specifies how the palette will be displayed; it may be one

of: PALETTE_TYPE_COLORBAR ("Color Bar" on the menuform) for a

linearly increasing color bar.

KPALETTE_TYPE_COLORCELL ("Color Cell" on the menuform) for a

palette of rectangular color cells.

or

PALETTE_TYPE_COLORWHEEL ("Color Wheel" on the menuform) for a

pie chart of colors.

Descriptions of Palette Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PALETTE_ADD

(N/A)

int N/A valid pixel value of the displayed data

object

XVW_PALETTE_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void palette_callback

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_PALETTE_CLEAR

(N/A)

int N/A (action

attribute)

TRUE

XVW_PALETTE_DELETE

(N/A)

int N/A (action

attribute)

valid pixel value of the displayed data

object

XVW_PALETTE_INDEXLIST

(N/A)

int * N/A integer array of image pixel values

XVW_PALETTE_INDEXNUM

(N/A)

int N/A size of the array specified by

XVW_PALETTE_INDEXLIST

XVW_PALETTE_TYPE

(paletteType)

int KPALETTE_TYPE_COLORBAR KPALETTE_TYPE_COLORBAR

KPALETTE_TYPE_COLORCELL

KPALETTE_TYPE_COLORWHEEL

5-53

Xvimage Program Services Volume III - Chapter 5

D.2.3. Complete Resource Set of the Palette Visual Object

The inheritance tree of the palette object is as follows:

manager -> graphics -> color -> palette

Accordingly, the complete resource set for the palette object includes:

1. The palette attribute resource set, given above

2. The color attribute resource set, given in Section B, "The Color Attributes"

3. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

4. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

D.2.4. Example Using the Palette Visual Object

Examples of programs using the 2D Plot object can be found in $ENVISION/exam-
ples/color/palette/. One of these is as follows.

#include <envision.h>

/*
* This example program creates a palette object.
* A palette object displays a rectangular area in which each pixel
* value from the image appears in the color that is displayed on the image.
* Pixel values are sorted in increasing order starting at zero.
*
* A callback is used to keep track of which pixels are selected by
* the user from the palette object.
*/

static void test_callback PROTO((xvobject, kaddr, kaddr));

void main(
int argc,
char *argv[])

{
kobject object;
xvobject parent, palette;
char *filename = "image:lizard";

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

5-54

Xvimage Program Services Volume III - Chapter 5

/* get the data object associated with the input image */
object = kpds_open_input_object(filename);

/*
* create the palette object, and associate it with the data object
* representing the input file

*/
parent = xvw_create_manager(NULL, "parent");
xvw_set_attributes(parent,

XVW_WIDTH, 375,
XVW_HEIGHT, 275,
NULL);

palette = xvw_create_palette(parent, "palette");
xvw_set_attributes(palette,

XVW_COLOR_COLOROBJ, object,
XVW_TACK_EDGE, KMANAGER_TACK_ALL,
XVW_PALETTE_TYPE, KPALETTE_TYPE_COLORCELL,

NULL);

xvw_add_callback(palette, XVW_PALETTE_CALLBACK, test_callback, NULL);

/* display and run */
xvf_run_form();

}

/*
* This test_callback is fired when the user clicks on a color cell of the
* palette object. It keeps an internal list of color cell indexes that
* have been selected by the user (for whatever use we may have for them,
* we are not doing anything with them here). It sets the XVW_PALETTE_ADD
* attribute for each color cell that is selected; that’s what makes it
* appear stippled. It sets the XVW_PALETTE_DELETE attribute when the
* color cell is selected again; that’s what puts it back to "normal".
* Also note that you can call the XVW_PALETTE_CLEAR attribute to clear
* (unselect) all the cells in the palette; when using that one, you
* should karray_free(indexes, KINT, index_num, NULL) and reset indexes=NULL.
*
*/

static void test_callback(
xvobject palette,
kaddr client_data,
kaddr call_data)

{
static int *indexes = NULL;
static int index_num = 0;

int *indx = (int *) call_data;

if (karray_locate(indexes, KINT, *indx, index_num) == -1)
{

xvw_set_attribute(palette, XVW_PALETTE_ADD, *indx);
kfprintf(kstderr, "adding cell %d to list of selected cells\n",

*indx);
indexes = karray_add(indexes, KINT, *indx, index_num++);

}
else
{

5-55

Xvimage Program Services Volume III - Chapter 5

xvw_set_attribute(palette, XVW_PALETTE_DELETE, *indx);
kfprintf(kstderr, "deleting cell %d from list of selected cells\n",

*indx);
indexes = karray_delete(indexes, KINT, *indx, index_num--);

}
}

D.3. The PrintMapVal Object

Figure 10: A printmapval object prints the colormap values that define the color of each pixel in an image
as the pointer is moved over the image. The printmapval object is similar to the printpixel object, except
that the values printed originate in the colormap, not in the image data, and there are typically three dis-
plays, one each for the Red, Green, and Blue map columns of the colormap.

D.3.1. xvw_create_printmapval() — create a printmapval xvobject

Synopsis
xvobject xvw_create_printmapval(

5-56

Xvimage Program Services Volume III - Chapter 5

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the printmapval object (for use in app-defaults files, etc)

Returns
The printmapval xvobject on success, NULL otherwise

Description
A printmapval object provides a mechanism which will track pointer movement in an image object and
print the values of the map data indexed by the pixel under the pointer. It was designed for use in con-
junction with an image object, and is only useful with data objects having a map segment.

The printmapval object is made up of one or more (width x height) sets of label objects; typically,
there will be three such sets, one each for the Red, Green, and Blue columns of the colormap. The
background of each label is the color defined by the values of the map columns at that pixel, and the
value displayed is the value of the corresponding map column.

D.3.2. Attributes of the PrintMapVal Object

Summary of PrintMapVal Attributes

Attribute Description

XVW_PRINTMAPVAL_CLIPFILE The name of a file containing a clip mask may be specified using this

attribute; the default is NULL. Note that this attribute is mutually

exclusive with XVW_PRINTPIXEL_CLIPOBJ; use one or the other, not

both. See the explanation of XVW_PRINTPIXEL_CLIPOBJ for more

details on the clip mask.

5-57

Xvimage Program Services Volume III - Chapter 5

Summary of PrintMapVal Attributes

Attribute Description

XVW_PRINTMAPVAL_CLIPOBJ A clip mask is used to obscure portions of the displayed map values; if

desired, this data object (kobject) attribute can be used to set a clip

mask. When a clip mask is used with the printmapval object, the only

map values that will be displayed by the printmapval object will be

those that correspond to a value data of (1) in the clip mask. Map val-

ues corresponding to a value of (0) in the clip mask will not be dis-

played. Note that ONLY images of data type bit can be used as clip

masks; if the input image to be used as a clip mask is not of type bit, it

will be internally converted to type bit, without prompting or warning,

before it is used. Note that this conversion will not affect the original

file in any way. If a clip mask currently being used is no longer

desired, set this attribute back to NULL. Note that this attribute is

mutually exclusive with XVW_PRINTMAPVAL_CLIPFILE; use one or the

other, not both.

XVW_PRINTMAPVAL_FILENAME The file containing the data object for which the map values are to be

displayed. Note that this attribute is mutually exclusive with

XVW_PRINTMAPVAL_OBJECT; use one or the other, not both.

XVW_PRINTMAPVAL_HEIGHT Specifies the number of map column values that should be displayed in

the vertical direction on the printmapval display.

XVW_PRINTMAPVAL_OBJECT This is the data object (kobject) containing the image for which map

values are to be displayed. Note that this attribute is mutually exclusive

with XVW_PRINTMAPVAL_FILENAME; use one or the other, not both.

XVW_PRINTMAPVAL_POLICY This attribute indicates whether the printmapval object is to display the

values from the colormap that is being used to display the data object

(ie, the RGB values that may have been converted and/or normalized),

or the values from the actual map segment of the data object being dis-

played (ie, the map values before they are converted and/or normalized

for use in defining the colors that appear on the screen). Values

include: KPRINTMAPVAL_DISPLAYEDVALUES ("Values Associated

With Displayed Color" on the menuform)

KPRINTMAPVAL_MAPDATAVALUES ("Actual Values from Map Data" on

the menuform)

XVW_PRINTMAPVAL_SHOWCOLOR This attribute indicates whether or not the color of the pixel under the

pointer should be displayed as the background color for the labelstring

object in which the map values are displayed. When set to FALSE, the

background will be black.

XVW_PRINTMAPVAL_UPDATEMODE This attribute indicates whether the printmapval display is to be

updated continuously as the pointer moves across the image, or not

until the button is clicked at a particular location in the image. Values

include: KPRINTMAPVAL_UM_CONTINUOUS , ("Continuous" on the men-

uform), or KPRINTMAPVAL_UM_BUTTONPRESS ("ButtonPress" on the

menuform)

XVW_PRINTMAPVAL_WIDTH Specifies the number of map column values that should be displayed in

the horizontal direction on the printmapval display.

5-58

Xvimage Program Services Volume III - Chapter 5

Summary of PrintMapVal Attributes

Attribute Description

XVW_PRINTMAPVAL_XPOSITION This is the X position in the image corresponding to the map value that

appears in the upper left hand corner of the printmapval grid.

XVW_PRINTMAPVAL_YPOSITION This is the Y position in the image corresponding to the map value that

appears in the upper left hand corner of the printmapval grid.

Descriptions of PrintMapVal Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PRINTMAPVAL_CLIPFILE

(N/A)

char * NULL valid name of input file containing clip

mask

XVW_PRINTMAPVAL_CLIPOBJ

(N/A)

kobject NULL valid data object defining clip maks

XVW_PRINTMAPVAL_FILENAME

(N/A)

char * NULL valid input filename

XVW_PRINTMAPVAL_HEIGHT

(printmapvalHeight)

int 9 1 <= height <= image height

XVW_PRINTMAPVAL_OBJECT

(N/A)

kobject NULL valid data object

XVW_PRINTMAPVAL_POLICY

(printmapvalPolicy)

int KPRINTMAPVAL_DIS-

PLAYEDVALUES

KPRINTMAPVAL_DISPLAYEDVALUES

KPRINTMAPVAL_MAPDATAVALUES

XVW_PRINTMAPVAL_SHOWCOLOR

(printmapvalShowcolor)

int FALSE TRUE/FALSE

XVW_PRINTMAPVAL_UPDATEMODE

(printmapvalUpdatemode)

int KPRINTMAPVAL_UM_CON-

TINUOUS

KPRINTMAPVAL_UM_CONTINUOUS

KPRINTMAPVAL_UM_BUTTONPRESS

XVW_PRINTMAPVAL_WIDTH

(printmapvalWidth)

int 7 1 <= width <= image width

XVW_PRINTMAPVAL_XPOSITION

(N/A)

int 0 0 - image width

XVW_PRINTMAPVAL_YPOSITION

(N/A)

int 0 0 - image height

D.3.3. Resource Set of the PrintMapVal Object

The inheritance tree of the printmapval object is as follows:

manager -> graphics -> color -> printmapval

Accordingly, the complete set of attributes for the printmapval object includes:

1. The pr intmapval object attribute resource set, given above

5-59

Xvimage Program Services Volume III - Chapter 5

2. The color attribute resource set, given in Section B, "The Color Attributes"

3. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

4. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

D.3.4. Example Using the PrintMapVal Visual Object

Examples using the printmapval visual object can be found in $ENVISION/exam-
ples/color/printmapval/. The simplest of these is as follows:

#include <envision.h>

/*
* This program creates an image object, a position object to reflect the
* location of the mouse pointer in the image, and a printmapval object to
* print the values of the map values indexed by the pixels surrounding that
* location.
*
* Note that you do NOT have to write an event handler to make the
* printmapval object update; the fact that we have created an image object
* using the same file for its data does the trick. The image object will
* recognise pointer motion within it, and cause the printmapval object (and
* the position object as well) to be updated automatically.
*/

static void change_policy PROTO((xvobject, kaddr, kaddr));

void main(
int argc,
char **argv,
char **envp)

{
kobject object;
char *filename = "image:mandril-rgb";
xvobject image, position, parent;
xvobject label, button, printmapval;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* create a data object from the information in the image file */
object = kpds_open_input_object(filename);

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create a manager to contain image & position objects */
parent = xvw_create_manager(NULL, "image_parent");

/* create the image object, associate it with the desired file */

5-60

Xvimage Program Services Volume III - Chapter 5

image = xvw_create_image(parent, "image");
xvw_set_attribute(image, XVW_IMAGE_IMAGEOBJ, object);

/*
* create the position object in the center below the image;
* associate it with the same data using XVW_POSITION_OBJECT.
*/
position = xvw_create_position(parent, "position");
xvw_set_attributes(position,

XVW_BELOW, image,
XVW_LEFT_OF, NULL,
XVW_RIGHT_OF, NULL,
XVW_POSITION_OBJECT, object,
NULL);

/* create a manager to contain image & position objects */
parent = xvw_create_manager(NULL, "printmapval_parent");

/* create printmapval object */
label = xvw_create_label(parent, "label");
xvw_set_attributes(label,

XVW_RIGHT_OF, NULL,
XVW_LABEL, "PrintMapVal Policy:",
NULL);

button = xvw_create_button(parent, "button");
xvw_set_attributes(button,

XVW_RIGHT_OF, label,
XVW_LABEL, "Print Displayed Map Values",
NULL);

printmapval = xvw_create_printmapval(parent, "printmapval");
xvw_set_attributes(printmapval,

XVW_BELOW, button,
XVW_PRINTMAPVAL_OBJECT, object,

XVW_PRINTMAPVAL_WIDTH, 9,
XVW_PRINTMAPVAL_HEIGHT, 9,

XVW_PRINTMAPVAL_SHOWCOLOR, TRUE,
NULL);

xvw_add_callback(button, XVW_BUTTON_SELECT,
change_policy, printmapval);

/* display & run the program */
xvf_run_form();

}

static void change_policy(
xvobject object,
kaddr client_data,
kaddr call_data)

{
int policy;
xvobject printmapval = (xvobject) client_data;

xvw_get_attribute(printmapval, XVW_PRINTMAPVAL_POLICY, &policy);

5-61

Xvimage Program Services Volume III - Chapter 5

if (policy == KPRINTMAPVAL_MAPDATAVALUES)
{

xvw_set_attribute(printmapval, XVW_PRINTMAPVAL_POLICY,
KPRINTMAPVAL_DISPLAYEDVALUES);

xvw_set_attribute(object, XVW_LABEL, "Print Displayed Map Values");
}
else
{

xvw_set_attribute(printmapval, XVW_PRINTMAPVAL_POLICY,
KPRINTMAPVAL_MAPDATAVALUES);

xvw_set_attribute(object, XVW_LABEL, "Print Actual Map Values");
}

}

D.4. The PseudoColor Object

Figure 11: The pseudocolor object provides a method of changing the colormap of another object. Here,
the RGB scrollbars are used to change the color associated with a range of pixel values.

D.4.1. xvw_create_pseudo() — create a pseudo xvobject

Synopsis
xvobject
xvw_create_pseudo(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

5-62

Xvimage Program Services Volume III - Chapter 5

a name for this particular instance of the pseudo object (for use in app-defaults files, etc)

Returns
The pseudocolor object on success, NULL otherwise

Description
The pseudocolor visual object provides a method of changing the colormap of another visual object. It
displays the colors associated with the pixel values of the displayed object (as a color palette, colorcell
grid, or color wheel). Under the color display is a set of three scrollbars, representing * Red, Green,
and Blue.

Select pixels for color change from the color palette, colorcell grid, or color wheel. Next, move the
thumbs of the three scrollbars underneath to change the red, green, and blue values defining the color
in which the selected pixels appear. If desired, specific values for red, green, and blue may be typed
directly into the text parameter boxes that appear to the right of the scrollbars. A "Reset" button at the
top of the pseudocolor object provides a convenient way to un-select previously selected pixels.

The pixels to be changed are selected from the colorcell grid (or color palette, or color wheel). Pixels
may be selected for color change using the following methods. These descriptions assume use of the
colorcell grid, but pixel selection for the color palette and color wheel work similarly. Pixels may be
selected individually, or in ranges. Note that all selected pixels on the colorcell grid will have their
color changed when you set the red, green, and blue values. The "Reset" button un-selects all selected
pixels in the colorcell grid.

1) To select a single pixel for color change, click on the color cell representing the desired pixel. The
color cell will appear intented and stippled when it is selected. To unselect the pixel, click the mouse
button on it again, or use the "Reset" button.

2) To select a range of pixels for color change, click on a pixel at the end of the range to be changed.
Holding the button down, move the mouse to the desired end point; the range may be moved back and
forth as long as the mouse button is held down. Releasing the mouse button sets the range. Multiple
ranges may be selected by repeating this process on previously unselected pixels. Portions of a
selected range may be unselected by repeating on previously selected pixels. To unselect the range,
repeat the selection process, or use the "Reset" button.

The XVW_COLOR_COLOROBJ attribute is used to specify the data object whose colormap the pseudo-
color object will be used to modify.

Note that pseudocolor should not be done on RGB images when the calling application is displayed on
an 8-bit screen. This is because a mapping transformation is used in order to convert the RGB image
into an 8-bit representation for visual display on an 8-bit screen.

Because of this transformation, pseudocoloring an RGB image on an 8-bit screen will not make sense;
any changes to the colormap made via thresholding would alter the 24-bit to 8-bit transformation (a
3-3-2 RGB map is used), rather than the RGB values themselves, producing an unexpected result.

5-63

Xvimage Program Services Volume III - Chapter 5

D.4.2. Attributes of the PseudoColor Visual Object

Summary of Pseudo Attributes

Attribute Description

XVW_PSEUDO_ADD This action attribute adds the pixel value specified to the pseudocolor

list of pixels. This can have two effects, depending on whether there

are already pixels in the pseudocolor list.

(1) if no pixels are currently in the pseudocolor list, XVW_PSEUDO_ADD

will cause the pseudocolor object’s RGB scrollbars to reflect the RGB

components of color of the pixel specified.

(2) if there are already one or more pixels in the pseudocolor list,

XVW_PSEUDO_ADD will cause the pixel being added to the list to change

to the color currently reflected by the RGB scrollars of the pseudocolor

object; pixels currently on the pseudocolor list will already be dis-

played in this color.

In either case, subsequent movement of the pseudocolor RGB scroll-

bars will change the color in which the pixel is displayed to the color

specified by the scrollbars.

Note that if desired, the XVW_IMAGE_VALUE attribute can be used to

obtain the pixel value over which the pointer is positioned; the

XVW_PSEUDO_ADD attribute may then be set to that pixel value.

Note that if desired, the XVW_PSEUDO_CLEAR action attribute may be

used to clear the psuedocolor list prior to adding a new pixel value, thus

achieving the first effect.

XVW_PSEUDO_ALPHAVAL This is the alpha channel value that determines the blending factor that

is applied to the color defined by the Red, Green, and Blue values. A

value of 1.0 for the alpha channel implies that the color defined by the

RGB values is completely "solid" (ie, the only color showing is that

which is defined by the RGB values; none of the background color will

"show through"). A value of 0.0 for the alpha channel implies that the

color defined by the RGB values is completely "transparent" (ie, the

only color showing is that of the background; none of the color defined

by the RGB values will be displayed). As the alpha channel value

moves from 0.0 to 1.0, the color defined by the RGB values will

become less "transparent" and more "solid"; the background color will

"show though" less and less, until it does not appear at all.

XVW_PSEUDO_BLUEVAL This is the blue component of the color in which the pixel value(s) that

are associated with the pseudocolor object appear.

5-64

Xvimage Program Services Volume III - Chapter 5

Summary of Pseudo Attributes

Attribute Description

XVW_PSEUDO_CALLBACK If desired, a callback may be installed on the pseudocolor object that

will be fired each time the user employs one of the RGB scrollbars to

change the colormap of the displayed object. An xvw_pseudo_struct

will be passed in as the call_data; cast this parameter accordingly

before using, as in:

xvw_pseudo_struct *pseudo_struct;

pseudo_struct = (xvw_pseudo_struct *) call_data;

The xvw_psuedo_struct is defined in $ENVI-

SION/include/xvimage/Psuedo.h as follows:

typedef struct

{

xvobject object;

int value;

int type;

} xvw_pseudo_struct;

XVW_PSEUDO_CLEAR This action attribute clears all pixel(s) from the pseudocolor list.

XVW_PSEUDO_DELETE This action attribute deletes the pixel value specified to the pseudocolor

list of pixels. Subsequent movement of the pseudocolor RGB scrollbars

will have no effect on the color of the pixel once it is deleted from the

psuedocolor list.

XVW_PSEUDO_GREENVAL This is the green component of the color in which the pixel value(s)

that are associated with the pseudocolor object appear.

XVW_PSEUDO_INDEX1 If the pseudocolor scrollbars are to operate on a range of pixels, this is

the first pixel value (colormap index) in the range.

XVW_PSEUDO_INDEX2 If the pseudocolor scrollbars are to operate on a range of pixels, this is

the last pixel value (colormap index) in the range.

XVW_PSEUDO_INDEXLIST This read-only attribute may be used to obtain an array of integers rep-

resenting the pixel values (colormap indices) that are currently associ-

ated with the pseudocolor object; ie, those pixels that will have their

color changed when the user moves the RGB scrollbars.

XVW_PSEUDO_INDEXNUM This is read-only attribute may be used to obtain the size of the integer

array that is returned by the XVW_PSEUDO_INDEXLIST attribute.

XVW_PSEUDO_PALETTE_OBJECT This read_onlyP attribute is the palette component of the pseudo

object. The palette component is where the actual pixels are displayed

and can be interactively selected.

XVW_PSEUDO_PALETTE_TYPE The pseudocolor palette may have a type of Color Bar, Color Cell, or

Color Wheel. Color bar is a linearly increasing colorbar palette. Color

cell is the palette of square color cells that is used by default. Color

wheel presents the palette as a pie chart of colors.

XVW_PSEUDO_REDVAL This is the red component of the color in which the pixel value(s) that

are associated with the pseudocolor object appear.

5-65

Xvimage Program Services Volume III - Chapter 5

Summary of Pseudo Attributes

Attribute Description

XVW_PSEUDO_SHOW_PALETTE This attribute causes the palette of linear colormap values to be dis-

played above the RGB scrollbars. Set to FALSE if the palette is not to

be shown.

XVW_PSEUDO_UPDATE_ONADD When set to TRUE, this attribute will cause pixels to immediately

change to the color specified by the pseudo object’s RGB scrollbars

when they are added to the pseudocolor list with XVW_PSEUDO_ADD

When set to FALSE, pixels do not change color until the user changes

the color specified by the RGB scrollbars.

XVW_PSEUDO_USE_ALPHA TRUE if an integer object is to be created so that the user can change

the alpha channel; FALSE otherwise.

Descriptions of Pseudo Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PSEUDO_ADD

(N/A)

int N/A pixel values that appear in the data of the

displayed image

XVW_PSEUDO_ALPHAVAL

(N/A)

float 0.0 0.0 - 1.0

XVW_PSEUDO_BLUEVAL

(N/A)

int 0 0-255

XVW_PSEUDO_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_PSEUDO_CLEAR

(N/A)

int N/A TRUE (action attribute)

XVW_PSEUDO_DELETE

(N/A)

int N/A pixel values currently in the pseudocolor

list, having been added previously with

the use of XVW_PSEUDO_ADD

XVW_PSEUDO_GREENVAL

(N/A)

int 0 0-255

XVW_PSEUDO_INDEX1

(N/A)

int N/A valid colormap index

XVW_PSEUDO_INDEX2

(N/A)

int N/A valid colormap index

XVW_PSEUDO_INDEXLIST

(N/A)

int * NULL integer array containing index list

XVW_PSEUDO_INDEXNUM

(N/A)

int 0 size of index list array given by

XVW_PSEUDO_INDEXLIST

5-66

Xvimage Program Services Volume III - Chapter 5

Descriptions of Pseudo Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PSEUDO_PALETTE_OBJECT

(N/A)

xvobject NULL valid xvobject

XVW_PSEUDO_PALETTE_TYPE

(pseudoPaletteObject.paletteType)

int KPALETTE_TYPE_COLORBAR KPALETTE_TYPE_COLORBAR

KPALETTE_TYPE_COLORCELL

KPALETTE_TYPE_COLORWHEEL

XVW_PSEUDO_REDVAL

(N/A)

int 0 0-255

XVW_PSEUDO_SHOW_PALETTE

(pseudoShowPalette)

int TRUE TRUE/FALSE

XVW_PSEUDO_UPDATE_ONADD

(pseudoUpdateOnadd)

int FALSE TRUE/FALSE

XVW_PSEUDO_USE_ALPHA

(pseudoUseAlpha)

int FALSE TRUE/FALSE

D.4.3. Complete Resource Set of the PseudoColor Visual Object

The inheritance tree of the pseudocolor object is as follows:

manager -> graphics -> color -> pseudo

Accordingly, the complete resource set for the pseudocolor object includes:

1. The psuedocolor attribute resource set, given above

2. The color attribute resource set, given in Section B, "The Color Attributes"

3. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

4. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

D.4.4. Example Using the Pseudocolor Visual Object

There are a number of programs using the pseudocolor object; they may be found in $ENVISION/exam-
ples/color/pseudo/. The simplest of these is as follows:

#include <envision.h>

/*
* This example simply displays a psuedocolor object working off the
* image information found in the "image:ball" image file. A pseudocolor
* object displays a set of the colorcells found in the image; below the

5-67

Xvimage Program Services Volume III - Chapter 5

* palette are three scrollbars to control the Red, Green, and Blue elements
* of a particular color. Select a "pseudocolor range" by clicking the
* first mouse button on two colorcells in the palette; then, use the Red,
* Green, and Blue scrollbars to change the color displayed by the pixels in
* that range.
*/

void main(
int argc,
char **argv,
char **envp)

{
kobject ball;

xvobject palette, pseudo, parent;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create a pseudocolor object w/ image:ball as target image */
parent = xvw_create_manager(NULL, "manager");

xvw_set_attributes(parent,
XVW_WIDTH, 400,
XVW_HEIGHT, 250,

NULL);
pseudo = xvw_create_pseudo(parent, "pseudo");

xvw_set_attributes(pseudo,
XVW_TACK_EDGE, KMANAGER_TACK_ALL,

XVW_LEFT_OF, NULL,
XVW_RIGHT_OF, NULL,
XVW_BELOW, NULL,
XVW_ABOVE, NULL,
NULL);

xvw_activate_menu(pseudo);

/* open data object associated with ball informatin */
ball = kpds_open_input_object("image:ball");

/*
* use XVW_COLOR_COLOROBJ to associate the pseudocolor object with

* the ball data object. alternatively, we could have used
* XVW_COLOR_COLORFILE to specify the "image:ball" file directly
*/
xvw_get_attribute(pseudo, XVW_PSEUDO_PALETTE_OBJECT, &palette);
xvw_set_attribute(palette, XVW_COLOR_COLOROBJ, ball);
xvw_set_attribute(pseudo, XVW_COLOR_COLOROBJ, ball);

/* display and run the program */
xvf_run_form();

}

5-68

Xvimage Program Services Volume III - Chapter 5

D.5. The Threshold Object

Figure 12: The threshold object allows you to perform pixel windowing and pixel thresholding on an
image.

D.5.1. xvw_create_threshold() — create a threshold object

Synopsis
xvobject xvw_create_threshold(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the threshold object (for use in app-defaults files, etc)

Returns
The threshold object on success, NULL on failure

Description
Creates an threshold object which will display the colormap values of an object’s colormap.

The threshold object is used by the user to mask out certain parts of the image so that they are only
looking at desired range of pixels. The threshold objects contains an upper and lower scrollbar from
which we can extract the pixel range to be threshold.

The threshold objects also contains the "pixel" that we are going to be setting the threshold values to,
and whether we are to accept or reject that range. The "accept" value is a boolean which tells us if we
are to threshold everything outside the lower & upper range or whether we threshold everything inside
that range. (If accept is true then we threshold everything outside the range otherwise we threshold the
pixels inside the range).

5-69

Xvimage Program Services Volume III - Chapter 5

The threshold works by setting the pixels in the threshold range to the current threshold color (speci-
fied by pixel). And then storing these values in the xvdisplay colormap. But in order to make sure
none of the other displays over-ride this threshold we set the pixel’s active boolean array to zero. By
setting the histogram to zero, none of the other displays will update those pixels with new values, until
we restore the active states.

Note that thresholding should not be used with RGB images when the calling application is displayed
on an 8-bit screen. This is because a mapping transformation is used in order to convert the RGB
image into an 8-bit representation for visual display on an 8-bit screen.

Because of this transformation, thresholding an RGB image on an 8-bit screen will not make sense;
any changes to the colormap made via thresholding would alter the 24-bit to 8-bit transformation (a
3-3-2 RGB map is used), rather than the RGB values themselves, producing an unexpected result.

D.5.2. Attributes of the Threshold Object

Summary of Threshold Attributes

Attribute Description

XVW_THRESHOLD_CALLBACK If desired, a callback may be installed on the threshold object that will

be fired each time the user employs one of the scrollbars to change the

lower or upper bound of the thresholding (or clipping) region. An

xvw_threshold_struct will be passed in as the call_data; cast this param-

eter accordingly before using, as in:

xvw_threshold_struct *thresh_struct;

thresh_struct = (xvw_threshold_struct *) call_data;

The xvw_threshold_struct is defined in $ENVI-

SION/include/xvimage/Threshold.h as follows:

typedef struct

{

xvobject intobj;

int type;

int value;

} xvw_threshold_struct;

XVW_THRESHOLD_CLIP_PIXELVAL Used only when the XVW_THRESHOLD_POLICY attribute is set to

KTHRESHOLD_POLICY_CLIP , this is the pixel value used in the

clipped, or masked-out, regions of the image. All pixels inside the

specified range will appear in their original pixel values. The opposite

happens when XVW_THRESHOLD_INVERT is set to TRUE (ie, the pixel

value is used for the pixels insie the range, while all pixels outside the

range appear in their original pixel values).

5-70

Xvimage Program Services Volume III - Chapter 5

Summary of Threshold Attributes

Attribute Description

XVW_THRESHOLD_INVERT When the threshold object is set to "non-inverted" (ie, if XVW_THRESH-

OLD_THRES_INVERT is set to FALSE), the pixel thresholding, pixel

clipping, and windowed thresholding operations will work normally.

When the threshold object is set to "inverted" (ie, if XVW_THRESH-

OLD_THRES_INVERT is set to TRUE), the pixel thresholding, pixel

clipping, and windowed thresholding operations will have the opposite

effect from what they do normally. For pixel thresholding, the values

outside the range (rather than inside) will be displayed in the pixel

value specified; for pixel clipping, the values outside the range (rather

than inside) will appear in their original values; for windowed thresh-

olding, the values outside the range (rather than inside) will have their

values normalized.

XVW_THRESHOLD_LOWERVAL The lower value of the thresholding (or clipping) region.

XVW_THRESHOLD_PALETTE_OBJECT This is the palette component of the threshold object. The palette com-

ponent is where the actual pixels are displayed and reflect the thresh-

olding process.

XVW_THRESHOLD_PIXELVAL Used only when the XVW_THRESHOLD_POLICY attribute is set to

KTHRESHOLD_POLICY_THRESH , this is the pixel value assigned to all

the pixels within the range defined by the scroll bars of the threshold

object. All pixels outside the specified range will appear black. The

opposite happens when XVW_THRESHOLD_INVERT is set to TRUE (ie,

the pixel value is used for the pixels outside the range, while all pixels

inside the range are black).

5-71

Xvimage Program Services Volume III - Chapter 5

Summary of Threshold Attributes

Attribute Description

XVW_THRESHOLD_POLICY A threshold visual object provides a mechanism with which you may

perform various types of thresholding on an image. When

XVW_THRESHOLD_POLICY is set to KTHRESHOLD_POLICY_THRESH ,

the threshold visual object will perform pixel thresholding on the

image. When XVW_THRESHOLD_POLICY is set to KTHRESHOLD_POL-

ICY_CLIP , the threshold visual object will perform pixel clipping on

the image. When XVW_THRESHOLD_POLICY is set to KTHRESH-

OLD_POLICY_WINDOWED, a windowed thresholding algorithm is used

to increase the contrast of the image.

Pixel Clipping
Pixel clipping is used to mask out certain parts of the image so
is observed. Pixel values to be displayed; all values outside the
predetermined pixel value. The user interactively specifies the
retain their original values. The pixel value to be used for the v
may be set using the XVW_THRESHOLD_CLIP_PIXELVAL attrib

Pixel Thresholding
Pixel thresholding is used to set all values in the image to one o
specified range will be displayed using a non-zero pixel value,
will be displayed in black.The user interactively specifies the re
displayed in the non-zero pixel value. The non-zero pixel value
XVW_THRESHOLD_PIXELVAL attribute.

Window Contrast Enhancement
Windowed thresholding is used to increase the contrast of the i
while masking out the other pixels in the image. The user inter
pixel values that will be displayed; all pixels outside the range
ues inside the specified range will have their pixel values norm
pixels in the image; thus, this operation can be thought of as a h

XVW_THRESHOLD_RESET This action attribute resets the lower and upper values of the threshold range to the lower and

the effect of undoing any prior thresholding operations, and setting the data object back to it’

XVW_THRESHOLD_SHOW_PALETTE This attribute causes the palette of linear colormap values to be displayed above the lower/up

palette is not to be shown.

XVW_THRESHOLD_UPPERVAL The upper value of the thresholding (or clipping) region

5-72

Xvimage Program Services Volume III - Chapter 5

Descriptions of Threshold Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_THRESHOLD_CALLBACK

(N/A)

void (*call-

back_rou-

tine)(xvob-

ject, kaddr,

kaddr)

NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_THRESHOLD_CLIP_PIXELVAL

(thresholdClipPixelVal)

Pixel white any leg al Pixel value

XVW_THRESHOLD_INVERT

(thresholdInvert)

int FALSE TRUE/FALSE

XVW_THRESHOLD_LOWERVAL

(N/A)

double minval minval - maxval

XVW_THRESHOLD_PALETTE_OBJECT

(N/A)

xvobject NULL valid xvobject

XVW_THRESHOLD_PIXELVAL

(thresholdPixelVal)

int black any leg al Pixel value

XVW_THRESHOLD_POLICY

(thresholdPolicy)

int KTHRESHOLD_POLICY_CLIP KTHRESHOLD_POLICY_THRESH

KTHRESHOLD_POLICY_CLIP

KTHRESHOLD_POLICY_WINDOWED

XVW_THRESHOLD_RESET

(N/A)

int N/A (action

attribute)

TRUE

XVW_THRESHOLD_SHOW_PALETTE

(thresholdShowPalette)

int TRUE TRUE/FALSE

XVW_THRESHOLD_UPPERVAL

(N/A)

double maxval minval - maxval

D.5.3. Attributes of the Threshold Object

The inheritance tree of the threshold object is as follows:

manager -> graphics -> color -> threshold

Accordingly, the complete resource set for the threshold object includes:

1. The threshold object attribute, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library", Section B, "General
Attributes of GUI and Visual Objects".

5-73

Xvimage Program Services Volume III - Chapter 5

D.5.4. Example using the Threshold Visual Object

An example using the threshold objec may be found in $ENVISION/examples/color/thresh-
old/1.threshold_display.

/*
* This example displays the threshold object, and
* allows you to do pixel windowing and pixel thresholding
* on the mandril image.
*/

#include <envision.h>

void quit_program PROTO((xvobject, kaddr, XEvent *, int *));

int main(
int argc,
char *argv[])

{
xvobject parent, image, threshold;

kobject data_object;
char *filename = "image:mandril";

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* open data object to be displayed in image & threshold objects */
data_object = kpds_open_input_object(filename);

/* create manager to be the parent object */
parent = xvw_create_manager(NULL, "parent");

/* create image object */
image = xvw_create_image(parent, "image");
xvw_set_attribute(image, XVW_IMAGE_IMAGEOBJ, data_object);

/* create threshold object */
threshold = xvw_create_threshold(parent, "threshold");
xvw_set_attributes(threshold,

XVW_BELOW, image,
XVW_TACK_EDGE, KMANAGER_TACK_HORIZ,
XVW_COLOR_COLOROBJ, data_object,

NULL);

/* display menuform for threshold object */
xvw_activate_menu(threshold);

/* add the action handler to quit on KeyPress ’q’ */
xvw_add_event(image, ButtonPressMask, quit_program, parent);

/* display and run */
xvf_run_form();

}

5-74

Xvimage Program Services Volume III - Chapter 5

/*
* action handler to quit program on "q"
*/

void quit_program(
xvobject object,
kaddr client_data,
XEvent *event,
int *dispatch)

{
xvobject parent = (xvobject) client_data;

xvw_destroy(xvw_toplevel(parent));
}

5-75

Xvimage Program Services Volume III - Chapter 5

This page left intentionally blank

5-76

Table of Contents

A. Introduction . 5-1
A.1. Overview of Visual Objects Related To Imaging 5-1
A.2. Overview of Visual Objects Related To Colormap Manipulation 5-1

B. The Color Attributes . 5-2
C. Visual Objects Related to Imaging . 5-10

C.1. The Animate Object . 5-10
C.1.1. xvw_create_animate() — create a slide animation visual object 5-11
C.1.2. Attributes of the Animation Object 5-11
C.1.3. Resource Set of the Animation Object 5-13
C.1.4. Example Using the Animate Visual Object 5-13

C.2. The Image Object . 5-14
C.2.1. xvw_create_image() — create an image object 5-15
C.2.2. Attributes of the Image Object 5-16
C.2.3. Complete Resource Set of the Image Object 5-23
C.2.4. Example using the Image Object 5-24

C.3. The ImageIcon Object . 5-25
C.3.1. xvw_create_imageicon() — create a imageicon object 5-25
C.3.2. Attributes of the ImageIcon Object 5-26
C.3.3. Complete Resource Set of the ImageIcon Object 5-26
C.3.4. Example using the ImageIcon Visual Object 5-27

C.4. The PanIcon Object . 5-27
C.4.1. xvw_create_panicon() — create a panicon object 5-28
C.4.2. Attributes of the PanIcon Object 5-28
C.4.3. Resource Set of the PanIcon Object 5-30
C.4.4. Example Using the PanIcon Visual Object 5-31

C.5. The Position Object . 5-32
C.5.1. xvw_create_position() — create a position object 5-33
C.5.2. Attributes of the Position Visual Object 5-34
C.5.3. Complete Resource Set of the Position Visual Object 5-34

C.6. The PrintPixel Object . 5-35
C.6.1. xvw_create_printpixel() — create a printpixel xvobject 5-35
C.6.2. Attributes of the PrintPixel Object 5-36
C.6.3. Resource Set of the PrintPixel Object 5-38
C.6.4. Example Using the PrintPixel Visual Object 5-38

C.7. The Zoom Object . 5-40
C.7.1. xvw_create_zoom() — create a zoom object 5-41
C.7.2. Attributes of the Zoom Object . 5-42
C.7.3. Complete Resource Set of the Zoom Object 5-43
C.7.4. Example Using the Zoom Object 5-43

D. Visual Objects Related to Colormaps . 5-45
D.1. The ColorCell Object . 5-45

D.1.1. xvw_create_colorcell() — create a colorcell xvobject 5-45
D.1.2. Attributes of the Colorcell Visual Object 5-46
D.1.3. Complete Resource Set of the ColorCell Visual Object 5-49
D.1.4. Example using the ColorCell Visual Object 5-49

D.2. The Palette Object . 5-51
D.2.1. xvw_create_palette() — create a palette object 5-51

- i -

Xvimage Program Services Volume III - Chapter 5

D.2.2. Attributes of the Palette Visual Object 5-52
D.2.3. Complete Resource Set of the Palette Visual Object 5-54
D.2.4. Example Using the Palette Visual Object 5-54

D.3. The PrintMapVal Object . 5-56
D.3.1. xvw_create_printmapval() — create a printmapval xvobject 5-56
D.3.2. Attributes of the PrintMapVal Object 5-57
D.3.3. Resource Set of the PrintMapVal Object 5-59
D.3.4. Example Using the PrintMapVal Visual Object 5-60

D.4. The PseudoColor Object . 5-62
D.4.1. xvw_create_pseudo() — create a pseudo xvobject 5-62
D.4.2. Attributes of the PseudoColor Visual Object 5-64
D.4.3. Complete Resource Set of the PseudoColor Visual Object 5-67
D.4.4. Example Using the Pseudocolor Visual Object 5-67

D.5. The Threshold Object . 5-69
D.5.1. xvw_create_threshold() — create a threshold object 5-69
D.5.2. Attributes of the Threshold Object 5-70
D.5.3. Attributes of the Threshold Object 5-73
D.5.4. Example using the Threshold Visual Object 5-74

- ii -

Program Services Volume III

Chapter 6

Xvplot

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 6 - Xvplot

A. Overview of Visual Objects Related To Plotting

A large variety of both 2D and 3D plot types are supported by the plot2D and plot3D visual objects. The 2D
axis object automatically creates and maintains the axes needed with 2D plots. Unfortunately, a 3D axis object
is not available as of yet, but is planned for the future. Area objects provide coordinated views in which inter-
active manipulation of plots, axes and annotations may be easily maintained. The visual objects related to
plotting include: the 2D axis object, the 2D plot object, the 3D plot object, and the area object.

Av ailable Functions

• xvw_create_area() - create a graphics area object
• xvw_create_axis2d() - create a 2D axis object
• xvw_create_indicator() - creates an indicator object
• xvw_create_plot2d() - create a 2D plot object
• xvw_create_plot3d() - create a 3D plot object

B. Issues Related to Plotting

Data to be plotted by a 2D or 3D plot object may be provided in one of two ways:

1. As an array of Coords, where the Coord structure is defined as:

typedef struct {
Real x, y, z; /* X, Y, and Z coordinates of plot points */
Index d; /* index into colormap, determining plot point color */

} Coord

2. As a data object, as defined by the Polymorphic Data Model (see Program Services Manual Vol
II, Chapters 1 and 2).

Whether or not the plot data originally comes from an array of Coords or from a data object, it is translated
internally into a Coord array in preparation for plotting. When the plot data originates as an array of Coords,
there is little "data interpretation" to be done. It is when the plot data originates as a data object that complex-
ity arises; the interpretation of that data will depending on the contents of the data object.

In addition to the issue of data interpretation, there are a number of rules governing how a plot is colored that
must be understood in order to obtain the best results from the 2D and 3D plot objects. Thus, data interpreta-
tion and plot color are the subjects to which the following sections are devoted.

6-1

Xvplot Program Services Volume III - Chapter 6

B.1. Interpretation of the Data Object

Interpretation of the data contained in a data object by a 2D or 3D plot object depends on the contents of the
data object. 1 The value segment, location segment, mask segment, and map segment may all be used to pro-
vide input to the 2D or 3D plot object; the time segment is the only data segment that is not interpreted. The
value segment and the location segment of a data object are used to specify the data points that are plotted. If a
map segment is present, it can be used to specify the colormap of the plot. A mask segment may also be used
to indicate which points in the data are valid and should be plotted, and which points in the data are invalid,
and should be omitted from the plot.

B.1.1. Value Segment Interpretation

Implicit Vs. Explicit Values
When the data provided for plot interpretation does not contain values to specify each coordinate
of points in a plot (as is the case when only the value segment is present, and no location segment
exists), some plot-point coordinates must be implicit. As opposed to an explicit value which is
actually present in the data, animplicit value is implied by its location in the value segment.
Implicit values are always incremental, beginning at 0 and increasing to the size of the dimension
being plotted. For example, 2D plot data which originates as a line of value data will obtain the Y
values explicitly from the value segment; however, the X values will be implied as 0, 1, 2, etc, up
to the size of the line.

Plotting Width, Height, Depth, Time, or Elements
All five dimensions of the value segment defined by the Polymorphic Data Model are supported
by the 2D and 3D plot objects. Accordingly, data to be plotted may be specified down width,
height, depth, time, or elements. The 2D plot object plots a single line of data. By default, this
line will be interpreted as the first row of data values, oriented down width. However, the
XVW_PLOT2D_X_ORIENTATION attribute may be set to KWIDTH , KHEIGHT , KDEPTH , KTIME , or
KELEMENTS in order to specify the orientation of the line that is extracted from the data object
and used to create the 2D plot. The orientation of the line being plotted by the 2D plot object
determines the meaning of the implicit X values of the plot. For instance, if a 2D plot is oriented
down width, the implicit X values of the 2D plot will represent width; if it is oriented down
height, the implicit X values of the plot will represent height. The explicit values actually
obtained from the value segment are always used as the Y coordinates

The 3D plot object plots a region of data. By default, this region is interpreted as the first (width
x height) plane of the value segment. The XVW_PLOT2D_X_ORIENTATION and
XVW_PLOT2D_Y_ORIENTATION attributes are used to specify the meaning of the implicit X and
Y values of the 3D plot. As in the 2D case, they may be set to KWIDTH , KHEIGHT , KDEPTH ,
KTIME , or KELEMENTS in order to cause the 3D plot object to plot width against height, or height
against elements, or any other combination of the five value data dimensions. The explicit values

1 For detailed descriptions of the value, location, map, and mask segments of a data object, see
Chapter 2 of the Program Services Manual Vol II, Polymorphic Data Services; this discussion
assumes that the reader is familiar with the Polymorphic Data Model used by VisiQuest 2001.

6-2

Xvplot Program Services Volume III - Chapter 6

obtained from the value segment are always used as the Z coordinates.

Plot Size

When data is obtained from the value segment for plotting, the entire size of the value segment
with respect to the dimension being plotted is used. For example, suppose a particular data object
contains a value segment of width 50 and height 75. A 2D plot of the data oriented down width
will always contain 50 points, one for each of the values in a row of the value data 2 ; if the plot is
changed to be oriented down height, it will then have 75 points, one for each of the values in a
column of the value data. The 3D case works similarly. For example, a 3D plot of the same data
set oriented down width and height will have 70 rows of 50 points each, the entire plot containing
3500 points.

Offsets into Width, Height, Depth, Time, and Elements

Taking into account the rules for plot size detailed above, it is not surprising that offsets into the
data are supported provided that the offset does not refer to the dimension being plotted. Again
assume the case of a data object of width 50 and height 75. A 2D plot that is oriented down width
may have a height offset value of anything from 0 to 74; varying the height offset allows any row
of the value segment to be plotted. Attempts to change the width offset, however, will result in an
error message, as the offset into the dimension being plotted must always be 0 in order to obtain
the entire extent of data. For both the 2D and 3D plot objects, there is one attribute corresponding
to each of the dimensions of the value segment that is used to set the offset in that dimension. For
example, XVW_PLOT2D_HEIGHT_OFFSET is used to offset the height on a 2D plot, and
XVW_PLOT3D_DEPTH_OFFSET is used to offset the depth on a 3D plot. Remember that it does
not make sense to set an offset in a particular dimension of the value segment to anything greater
than the size of that dimension. For example, it does not make sense to set a depth offset of 21
when the data object being used as input only has a depth of 20, or to set a time offset of 3 when
the time size of the value segment is only 1. Errors will occur when such attempts are made.

Color Interpretation

The foreground color can be used to specify the color of a plot in its entirety. When this is the
case, there is no "color interpretation" as such; the foreground color is specified, and the plot
appears in that color (see Chapter 2, Section B.3).

Alternatively, the color of each point may be individually specified. The value segment of the
data object may be used to specify plot colors (see Chapter 5, Section G.3.2), the values used for
color are the same as those used for the last coordinates in the coordinate pair or coordinate
triplet, except that they are first cast to type Index (unsigned long) and normalized between 0 and
255. In other words, for a 2D plot, the same values are used for d as are used for the Y coordi-
nates; for a 3D plot, the same values are used for d as are used for the Z coordinates.

Summary Table
The following table summarizes the data interpretation of the value segment by the 2D and 3D
plot objects.

2 The exception to this is when a mask segment is used, a subject which will be discussed later

6-3

Xvplot Program Services Volume III - Chapter 6

Summary of Plot Data Interpretation With Data Object Containing Value Data

Plot Dimension Interpretation

2D Plot x : implicit and incremental, from 0 to w, h, d, t, or e

y : explicit value data, obtained down w, h, d, t, or e

d : explicit value data, same as y but normalized from (0 - 255)

3D Plot x : implicit and incremental, from 0 to w, h, d, t, or e

y : implicit and incremental, from 0 to w, h, d, t, or e

z : explicit value data, obtained from (w x h), (h x d), (w x d), etc

d : explicit value data, same as z but normalized from (0 - 255)

B.1.2. Location Segment Interpretation

The data that is plotted by the 2D and 3D plot objects may be explicitly stored in the location segment of a
data object. When a location segment is present in a data object, the 2D and 3D plot objects will use the loca-
tion segment as the coordinates to be plotted, whether or not a value segment also exists. In the presence of a
location segment, the value segment will only be used for color interpretation, and then only if ShadeType is
specified as Imagery.

The way that the location segment is interpreted depends on its dimensionality, or the size of each location
vector. The 2D plot object will interpret location dimensions of 1 to 3, while the 3D plot object will interpret
location dimensions of 2 to 4.

Implicit Vs. Explicit Values
In general, the main motivation for specification of plot data within the location segment of a data
object is to avoid the use of implicit values, and to specify all coordinate values explicitly. How-
ev er, in the two cases when the location segment dimensionality is not large enough to accomo-
date explicit storage of all values (see "Interpretation of Location Dimensions," below) it is some-
times necessary to use implicit values in order to compensate. When implicit values are used with
location segment, they follow the same rules as implicit values in the value segment.

Plotting Width, Height, or Depth
All three dimensions of the location segment defined by the Polymorphic Data Model are sup-
ported by the 2D and 3D plot objects. Accordingly, data to be plotted may be specified down
width, height, or depth. By default, the 2D plot object extracts a line down width, while the 3D
plot object extracts a plane of (width x height). As when data from the value segment is being
plotted, the XVW_PLOT2D_X_ORIENTATION is used by the 2D plot object, and both
XVW_PLOT2D_X_ORIENTATION and XVW_PLOT2D_Y_ORIENTATION is used by the 3D plot
object to specify the orientation of the plot data to be interpreted. When the location segment is
used to store the plot data, however, KTIME and KELEMENTS are not valid settings for the orienta-
tion attributes, since time and elements are not dimensions of the location segment.

6-4

Xvplot Program Services Volume III - Chapter 6

Plot Size
The rules for determining plot size from data stored in the location segment are identical to those
used when the data is stored in the value segment.
That is, the size of the plot data is determined by the orientation of the plot data and the size of

the corresponding dimension of the location segment.

Offsets into Width, Height, and Depth
The same rules apply with respect to offsets into width, height, and depth of the location segment
as they do with respect to offsets into the value segment. In keeping with the definition of the
location segment, however, the time and elements offsets do not apply.

Interpretation of Location Dimensions
Interpretation of location segment changes depending on whether or not a value segment is also
present. The biggest difference in the interpretation is with respect to color. Specification of
color may be done either with the value segment or in the location segment. The
XVW_PLOT2D_COLOR_??? attribute, which may have a value of KPLOT2D_??? or
KPLOT2D_??? indicates whether the value segment or the location segment is to be used to spec-
ify the color of plot points. Of course, only when the data object has both a a value segment and a
location segment does the XVW_PLOT2D_COLOR_??? really take effect. When a data object has
no location segment, the color specification must come from the value segment; when it has no
value segment, the color specification must come from the location segment. However, when
both are present, and ShadeType is set to Imagery, the color values will be obtained from the
value segment; when ShadeType is set Elevation, the color values will be obtained from the loca-
tion segment.

The other difference between interpretation of a data object that has only a location segment and a
data object that has both a location segment and a value segment is when the location dimension
is smaller than the dimension of the plot. The 2D plot object will interpret location dimensions of
1, 2, or 3. When the location dimension is 2 or 3, there is enough information to explicitly store
values for both X and Y; howev er, when the location dimension is only 1, another interpretation
must be applied. When the location dimension is larger than 3, the interpretation is done as if the
dimension was only 3; the additional values are ignored.

Similarly with the 3D case, the 3D plot object will interpret location dimensions of 2, 3, or 4.
When the location dimension is 3 or 4, there is enough information to explicitly store values for
X, Y, and Z; however, when the location dimension is only 2, a more flexible interpretation must
be implied in order to compensate for the missing value. When the location dimension is larger
than 4, the interpretation is done as if the dimension was only 4; the additional values are ignored.

Summary Tables
The following tables provide a summary of the rules used by the 2D and 3D plot object to inter-
pret location segment. Note that when a table entry reads "value," this is a shorthand for ’Explicit
value obtained from value segment’ Please see the "Value Data Interpretation" Section for details
relevant to 2D or 3D plotting.

6-5

Xvplot Program Services Volume III - Chapter 6

Summary of 2D Plot Data Interpretation With Data Object Containing Location Data

Data Object Contents Value Segment Present Value Segment Absent

And (Shade Type) set to (Imagery) Or (Shade Type) set to (Elevation)

Location dimension = 1

{location x values}

x : location x

y : value

d : value

x : implicit

y : location x

d : location x

Location dimension = 2

{location (x,y) values}

x : location x

y : location y

d : value

x : location x

y : location y

d : location y

Location dimension = 3

{location (x,y,d) values}

x : location x

y : location y

d : value

x : location x

y : location y

d : location d

Summary of 3D Plot Data Interpretation With Data Object Containing Location Data

Data Object Contents Value Segment Present Value Segment Absent

And (Shade Type) set to (Imagery) Or (Shade Type) set to (Elevation)

Location dimension = 1

{location x values}

invalid invalid

Location dimension = 2

{location (x,y) values}

x : location x

y : location y

y : value

d : value

x : implicit

y : location x

z : location y

d : location y

Location dimension = 3

{location (x,y,z) values}

x : location x

y : location y

z : location z

d : value

x : location x

y : location y

z : location z

d : location z

Location dimension = 4

{location (x,y,z,d) values}

x : location x

y : location y

z : location z

d : value

x : location x

y : location y

z : location z

d : location d

B.2. Plot Color

Plots can be colored in one of two ways: the color of the entire plot can be specified with the foreground color,
or the color of each point in the plot can be specified individually. In either case, the method for color specifi-
cation differs depending on whether the plot data is specified using a Coord array of points or using a data
object. Since 2D and 3D plots follow the same rules for color interpretation, the 2D case is used for this expla-
nation.

6-6

Xvplot Program Services Volume III - Chapter 6

Color Origination When Plot Data Is Specified Using Data Object

When the plot data is specified using a data object, the XVW_PLOT2D_COLOR_ORIGINATION
attribute is used to specify whether the color of the plot is to be dictated by values stored in the
data or by the foreground color. By default, this attribute have a value of
KPLOT2D_COLOR_FROM_FOREGROUND; thus, by default, plots that are specified using a data
object will be displayed in the foreground color. The foreground color can be specified either in
an app-defaults file (see Appendix A) or using the XVW_FOREGROUND_COLOR attribute.

Alternatively, the color specification for each point in the plot may be provided in a specified col-
ormap. If this is to be the case, the XVW_PLOT2D_COLOR_ORIGINATION must first be set to
KPLOT2D_COLOR_FROM_DATA .

When the color specification for the plot is included as part of the plot data, there may be one of
three cases. In the first case, the data object being plotted contains its own colormap. When this
is the case, that colormap will dictate the color of each point in the plot. In the second case, the
data object being plotted does not contain its own colormap; for lack of more specific informa-
tion, the plot object will use the Rainbow colormap to color the plot. In the third case, the data
object being plotted may or may not contain its own colormap, but this information is ignored
because it is over-ridden by an explicit set of the XVW_COLOR_COLOROBJ attribute by the applica-
tion. If this resource is explicitly set on the plot object, the colormap contained by the data object
referenced will always over-ride any other color interpretation possibilities.

The following table summarizes the rules for color interpretation when a data object is used to
provide the plot data. In this table, the category "Use Foreground" implies that
XVW_PLOT2D_COLOR_ORIGINATION is set to the default KPLOT2D_COLOR_FROM_FORE-
GROUND; the category "Use Data" implies that XVW_PLOT2D_COLOR_ORIGINATION has been set
to KPLOT2D_COLOR_FROM_DATA . In the "Configuration" entries, "plot object" means the data
object supplying the data to be plotted, specified using KPLOT2D_PLOTOBJ , and "color object"
means the data object supplying an alternate colormap, specified using XVW_COLOR_COLOROBJ .

Summary of Plot Color Origination When Plot Data Comes From a Data Object

Configuration Use FG Use Data

Plot object does contain a colormap;

color object IS NOT set

Color dictated by

foreground color

Color dictated by

colormap in plot object

Plot object does not contain a col-

ormap;

color object IS NOT set

Color dictated by

foreground color

Rainbow autocolor

procedure is used

Plot object does contain a colormap;

color object IS set

Color dictated by

foreground color

Color dictated by

colormap in color object

Plot object does not contain a col-

ormap;

color object IS set

Color dictated by

foreground color

Color dictated by

colormap in color object

Color Origination When Plot Data Is Specified Using Coord Array

6-7

Xvplot Program Services Volume III - Chapter 6

When plot data is specified using a Coord array, the XVW_PLOT2D_COLOR_ORIGINATION
attribute is not relevant. Instead, the Index d field of each Coord element is always used to dictate
plot color. If the foreground color is to be used to color the plot, the d value of each Coord ele-
ment MUST be explicitly set to KGRAPHICS_UNINITIALIZED . When the d value is set to
KGRAPHICS_UNINITIALIZED , the plot object will know to display that point of the plot in the
foreground color. Naturally, if ALL Coord elements in the array have their d fields set in this
way, the entire plot will appear in the foreground color.

Alternatively, the d fields of the Coords in the array may be set to some value other than KGRAPH-
ICS_UNINITIALIZED . When this is the case, the plot point in question will appear in the color
implied by the value of the d field. Of course, in order to "imply" a color, the d fields of the
Coords must contain indices into a colormap. Accordingly, a data object containing the colormap
that will be indexed by the d fields MUST be specified using XVW_COLOR_COLOROBJ , or the col-
ors in which the plot is displayed will be undefined. The following table summarizes the rules for
color interpretation when a Coord array is used to provide the plot data. In this table, "color
object" means the data object supplying the colormap, specified using XVW_COLOR_COLOROBJ .

Summary of Plot Color Origination When Plot Data Comes From a Coord Array

Configuration Color Interpretation

Coord element "d" values set to

KGRAPHICS_UNINITIALIZED

Plot point specified by that Coord ele-

ment will appear in the foreground

color

Coord element "d" values set to

something other than KGRAPH-

ICS_UNINITIALIZED; color object

set to data object containing colormap

Coord element "d" values interpreted

as indices into the colormap contained

in the color object; plot points will

appear in the color specified by the

colormap.

Coord element "d" values set to

something other than KGRAPH-

ICS_UNINITIALIZED; color object

NOT set to data object containing col-

ormap

Coord element "d" values interpreted

as indices into nonexistent colormap;

results undefined

C. The Area Object

6-8

Xvplot Program Services Volume III - Chapter 6

Figure 1: The area object is used to maintain a coordinated viewing system among the other objects to
which it is a parent, most commonly plot objects and axis objects. Here, an area object is used to manage
two 2D plot objects, an axis object, and a date object.

C.1. xvw_create_area() — create a graphics area object

Synopsis
xvobject xvw_create_area(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the area object (for use in app-defaults files, etc)

Returns
The area object on success, NULL on failure

Description
An area object provides an area which contains a coordinated view of other visual objects; it is primar-
ily designed to provide a backplane for 2D plot objects, 3D plot objects, 2D axis objects, and annota-
tions. Any visual objects that are children of the area object will have the same world view as the con-
trolling visual object, where the controlling visual object may be specified by the application using the
XVW_GRAPHICS_ATTACH attribute (if an axis is used, it is usually specified as the controlling
visual object).

6-9

Xvplot Program Services Volume III - Chapter 6

C.2. Attributes of the Area Object

Summary of Area Attributes

Attribute Description

XVW_AREA_DATE If XVW_AREA_DISPLAY_DATE is set to TRUE, this read-only attribute

attribute may be used to obtain the date visual object which is used to

display the date.

XVW_AREA_DISPLAY_DATE This attribute controls whether or not the date is displayed

at the bottom of the area object. Set to TRUE to display

date, FALSE to suppress date.

XVW_AREA_DISPLAY_TITLE This attribute controls whether or not a title is displayed

at the top of the area object. Set to TRUE to display title,

FALSE to suppress title.

XVW_AREA_TITLE If XVW_AREA_DISPLAY_TITLE is set to TRUE, this read-only attribute

attribute may be used to obtain the string visual object which is used to

display the title.

XVW_AREA_TITLE_STRING If XVW_AREA_DISPLAY_TITLE is set to TRUE, this attribute deter-

mines the string that is used as the title of the area object.

Descriptions of Area Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_AREA_DATE

(N/A)

xvobject NULL date xvobject (read only)

XVW_AREA_DISPLAY_DATE

(areaDisplayDate)

int FALSE TRUE/FALSE

XVW_AREA_DISPLAY_TITLE

(areaDisplayTitle)

int TRUE TRUE/FALSE

XVW_AREA_TITLE

(N/A)

xvobject NULL string xvobject (read only)

XVW_AREA_TITLE_STRING

(areaTitle.stringString)

char * "Area Object" any valid string

C.3. Resource Set of the Area Object

The inheritance tree of the animation object is as follows:

manager -> graphics -> area

Accordingly, the complete resource set for the area object includes:

6-10

Xvplot Program Services Volume III - Chapter 6

1. The area object attribute, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

C.4. Example using the Area Visual Object

Several example programs using the area visual object can be found in $ENVISION/examples/plot/.
One of these is as follows.

#include <envision.h>

Coord data[4000];

void recompute_points PROTO((xvobject, kaddr, XEvent *, int *));

/*
* This example demonstrates how an area object can be used to provide
* a coordinated world coordinate system for a plot and a set of axes.
* It creates an area object, with a 2D plot and a set of 2D axes within
* it; it attaches the plot and the axes to the area object, so they
* have a coordinated world coordinate view, and keep that coordinated
* view even when the range of the plot changes.
*
* Click on the image to invoke the event handler which re-computes the
* sin curve plotted to a new range; the plot and the axis system will
* update together.
*/

#define PTNUM 50
void main(

int argc,
char *argv[])

{
xvobject parent, area, axis, plot;
int i, degrees;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{
kerror(NULL, "main", "Cannot open display");
kexit(KEXIT_FAILURE);
}

/*
* Generate initial sin curve to be plotted
*/
for (i = 0, degrees = 9; i < PTNUM; i++, degrees+=20)
{

data[i].x = i;
data[i].y = sin((double) kdegrees_radians(degrees));

6-11

Xvplot Program Services Volume III - Chapter 6

data[i].d = KGRAPHICS_UNINITIALIZED;
}

/*
* create a parent for the area
*/
parent = xvw_create_manager(NULL, "parent");
xvw_set_attributes(parent,

XVW_WIDTH, 400,
XVW_HEIGHT, 400,
NULL);

/*
* create a coordinated axis and plot object in an area object

*/
area = xvw_create_area(parent, "area");
xvw_set_attributes(area,

XVW_AREA_DISPLAY_DATE, FALSE,
XVW_AREA_TITLE_STRING, "2D Plot",

XVW_TACK_EDGE, KMANAGER_TACK_ALL,
XVW_BACKGROUND_COLOR, "black",
NULL);

/*
* create the axis system
*/
axis = xvw_create_axis2d(area, "axis");
xvw_set_attributes(axis,

XVW_GRAPHICS_ATTACH, axis,
XVW_GRAPHICS_VIEWPORT_MIN_X, 0.2,

XVW_GRAPHICS_VIEWPORT_MIN_Y, 0.2,
XVW_GRAPHICS_VIEWPORT_MAX_X, 0.9,
XVW_GRAPHICS_VIEWPORT_MAX_Y, 0.9,

NULL);

/*
* The viewport max and mins do not have to be set for the plot
* object, since it’s attached to the axis object. They will have the
* same values as the axis object, since the parent of the axis

* object is an area object. This is also true for the world
* coordinates; however it is the plot that is dictating these values
* (i.e. the maximum and minimum of the data being plotted) and the
* axis that is inheriting them.

*/
plot = xvw_create_plot2d(area, "plot coordinated");
xvw_set_attributes(plot,

XVW_GRAPHICS_ATTACH, axis,
XVW_PLOT2D_POINTS, data,

XVW_PLOT2D_PLOTSIZE, PTNUM,
XVW_FOREGROUND_COLOR, "Magenta",

NULL);

xvw_add_event(area, ButtonPressMask, recompute_points, plot);

xvf_run_form();
}

void recompute_points(
xvobject object,

6-12

Xvplot Program Services Volume III - Chapter 6

kaddr client_data,
XEvent *event,
int *dispatch)

{
int i, degrees;
static int factor = 2;

xvobject plot_object = (xvobject) client_data;

/*
* Generate a new sin curve to be plotted
*/
for (i = 0, degrees = 9; i < (PTNUM * factor); i++, degrees+=20)
{

data[i].x = i;
data[i].y = sin((double) kdegrees_radians(degrees));

data[i].d = KGRAPHICS_UNINITIALIZED;
}
xvw_set_attributes(plot_object,

XVW_PLOT2D_POINTS, data,
XVW_PLOT2D_PLOTSIZE, (PTNUM * factor),
NULL);

factor++;
if (factor > 5) factor = 1;

}

D. The 2D Plot Object

Figure 2: The 2D plot object supports a number of different plot types, including the histogram shown
here. Its internal menuforms (not shown) allow the user to change the plot type, line type, marker type,
and plot color.

D.1. xvw_create_plot2d() — create a 2D plot object

Synopsis
xvobject xvw_create_plot2d(

6-13

Xvplot Program Services Volume III - Chapter 6

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the 2D plot object (for use in app-defaults files, etc)

Returns
Returns the created 2D plot xvobject, or NULL upon failure

Description
A 2D plot object is used to display a 2D plot.

A variety of plot types are supported, including line plots, discrete plots, bar graphs, polymarker plots,
linemarker plots, and colormarker plots. The 2D plot object is generally used in conjunction with a 2D
axis object, where both are created as children of an area object so that a coordinated world coordinate
view is automatically supported.

D.2. Attributes of the 2D Plot Object

Summary of Plot2D Attributes

Attribute Description

PLOT2D_COLOR_PTS_INTERACTIVELY This action attribute allows the user to rubberband about desired points

in the plot and colors them automatically, in the color specified by

XVW_PLOT2D_HIGHLIGHTCOLOR . As an action attribute, this attribute

can only be used with xvw_set_attribute(s)(), not with

xvw_get_attribute(s)(). When this attribute is set, the user is expected

to move the pointer into the 2D plot object; the cursor will change to

the hand, indicating that the user should rubber-band about the points

that they wish to be colored differently in the plot. The ROI shape that

is used for rubberbanding about the points is specified using the

XVW_PLOT2D_ROI_SHAPE attribute. After the user has completed the

rubber-banding procedure, the points inside the ROI specified are auto-

matically colored in the highlight color. The points in the plot that are

ouside the rubberbanded area will remain in the original color.

6-14

Xvplot Program Services Volume III - Chapter 6

Summary of Plot2D Attributes

Attribute Description

PLOT2D_DELETE_PTS_INTERACTIVELY This action attribute allows the user to rubberband about desired points

in the plot and deletes them automatically. As an action attribute, this

attribute can only be used with xvw_set_attribute(s)(), not with

xvw_get_attribute(s)(). When this attribute is set, the user is expected

to move the pointer into the 2D plot object; the cursor will change to

the hand, indicating that the user should rubber-band about the points

that they wish to be deleted from the plot. The ROI shape that is used

for rubberbanding about the points is specified using the

XVW_PLOT2D_ROI_SHAPE attribute. After the user has completed the

rubber-banding procedure, the points inside the ROI specified are auto-

matically deleted from the plot data. Thus, setting this action attribute

has the side effect of modifying the data being used by the 2D plot

object; if the data has been specified using the XVW_PLOT2D_POINTS

attribute, the pointer to the Coord array should be re-obtained with

xvw_get_attribute(s)() before it is used again by the application.

XVW_PLOT2D_COLOR_ORIGINATION This attribute is only used when the plot data is provided via a kobject

specified using the XVW_PLOT2D_PLOTOBJ or XVW_PLOT2D_PLOTFILE

attributes. It dictates whether the color of the plot is to be specified by

the plot foreground color or by the plot data itself. If the entire plot is

to appear in a particular color, set this attribute to

KPLOT2D_COLOR_FROM_FOREGROUND; then, specify the desired color

using the XVW_FOREGROUND or XVW_FOREGROUND_COLOR attributes. If

each point in the data set is to have its color specified individually, set

this attribute to KPLOT2D_COLOR_FROM_DATA . The color of each point

in the plot will be dictated by the values stored in the kobject; see ???

for details on how the color is interpreted from the data of the kobject.

XVW_PLOT2D_DATA_MAX_X This read-only attribute returns the maximum of the X coordinates in

the 2D plot data currently in the Coord array specified with

XVW_PLOT2D_POINTS .

XVW_PLOT2D_DATA_MAX_Y This read-only attribute returns the maximum of the Y coordinates in

the 2D plot data currently in the Coord array specified with

XVW_PLOT2D_POINTS .

XVW_PLOT2D_DATA_MIN_X This read-only attribute returns the minimum of the X coordinates in

the 2D plot data currently in the Coord array specified with

XVW_PLOT2D_POINTS .

XVW_PLOT2D_DATA_MIN_Y This read-only attribute returns the minimum of the Y coordinates in

the 2D plot data currently in the Coord array specified with

XVW_PLOT2D_POINTS .

XVW_PLOT2D_DEPTH_OFFSET This attribute in conjunction with the XVW_PLOT2D_X_ORIENTATION

attribute; when XVW_PLOT2D_X_ORIENTATION is not set to KDEPTH , it

is used to specify the depth offset at which the line of plot data is to be

extracted.

6-15

Xvplot Program Services Volume III - Chapter 6

Summary of Plot2D Attributes

Attribute Description

XVW_PLOT2D_ELEMENTS_OFFSET This attribute in conjunction with the XVW_PLOT2D_X_ORIENTATION

attribute; when XVW_PLOT2D_X_ORIENTATION is not set to KELE-

MENTS , it is used to specify the elements offset at which the line of plot

data is to be extracted.

XVW_PLOT2D_HEIGHT_OFFSET This attribute in conjunction with the XVW_PLOT2D_X_ORIENTATION

attribute; when XVW_PLOT2D_X_ORIENTATION is not set to KHEIGHT ,

it is used to specify the height offset at which the line of plot data is to

be extracted.

XVW_PLOT2D_HIGHLIGHTCOLOR When the PLOT2D_COLOR_PTS_INTERACTIVELY attribute is used to

interactively change the color of a region in the plot within a particular

region of interest, this attribute specifies the color in which that portion

of the plot will be displayed. The color is specified by name.

XVW_PLOT2D_PLOTFILE The file containing the 2D plot data to be displayed. Note that this

attribute is mutually exclusive with XVW_PLOT2D_PLOTOBJ; use one or

the other, not both.

XVW_PLOT2D_PLOTOBJ The data object containing the 2D plot data to be displayed. Note that

this attribute is mutually exclusive with XVW_PLOT2D_PLOTFILE; use

one or the other, not both.

XVW_PLOT2D_PLOTSIZE This is the number of data points contained in the Coord array specified

by the attribute XVW_PLOT2D_POINTS . Note that you must use this

attribute to specify the number of points prior to specifying the data

points with XVW_PLOT2D_POINTS .

XVW_PLOT2D_PLOTTYPE This attribute indicates how the plot is to be displayed. Plot types

include line plots, discrete plots, bar graphs, polymarker plots (also

known as scatter plots), and linemarker plots (a combination of the line

plot and the scatter plot).

6-16

Xvplot Program Services Volume III - Chapter 6

Summary of Plot2D Attributes

Attribute Description

XVW_PLOT2D_POINTS This is the array of coordinates defining the 2D data points in the plot.

It is an array of type Coord, where the Coord structure is defined as:

typedef struct

{

Real x, y, z;

Index d;

} Coord;

Note that the XVW_PLOT2D_PLOTSIZE attribute must be set to the num-

ber of points in the Coord array prior to setting the

XVW_PLOT2D_POINTS attribute.

The z value is ignored for all 2D plot types.

If the color of a plot point is to be dictated by either the XVW_FORE-

GROUND or the XVW_FOREGROUND_COLOR attributes, set the d value to

KGRAPHICS_UNINITIALIZED .

Alternatively, you may set the d value to the pixel value which specifies

the desired color of the plot point. See ??? for more details on specify-

ing plot colors.

XVW_PLOT2D_ROI This is a read-only action attribute; that is, it can only be used with

xvw_get_attribute(s)(). It allows the user to interactively specify a

desired region of interest in the 2D plot object. The plot points that are

inside the specified region of interest will be returned in a coordinate

array.

XVW_PLOT2D_ROI_POLICY When the XVW_PLOT2D_ROI attribute is used to extract a region of

interest, this attribute specifies whether the ROI is defined by the region

inside the shape, by the region outside the shape, or by the outline of

the shape itself.

XVW_PLOT2D_ROI_SHAPE When the XVW_PLOT2D_ROI attribute is used to extract the plot points

that fall within a particular region of interest, this attribute specifies the

shape of the ROI that will be interactively drawn by the user. Sup-

ported ROI shapes include rectangle, polygon, circle, ellipse, line, and

freehand.

XVW_PLOT2D_TIME_OFFSET This attribute in conjunction with the XVW_PLOT2D_X_ORIENTATION

attribute; when XVW_PLOT2D_X_ORIENTATION is not set to KTIME , it

is used to specify the time offset at which the line of plot data is to be

extracted.

XVW_PLOT2D_WIDTH_OFFSET This attribute in conjunction with the XVW_PLOT2D_X_ORIENTATION

attribute; when XVW_PLOT2D_X_ORIENTATION is not set to KWIDTH , it

is used to specify the width offset at which the line of plot data is to be

extracted.

6-17

Xvplot Program Services Volume III - Chapter 6

Summary of Plot2D Attributes

Attribute Description

XVW_PLOT2D_X_ORIENTATION This attribute is only used when the plot data is provided via a kobject

specified using the XVW_PLOT2D_PLOTOBJ or XVW_PLOT2D_PLOTFILE

attributes; furthermore, it only applies when the plot data is stored in

the value segment of the data object. It dictates how the 2D plot data is

to be extracted from the value segment of the data object. The 2D plot

data is always extracted as a single line, but that line may be oriented

down width, height, depth, time, or elements.

Descriptions of Plot2D Attributes

Attribute Type Default Legal
(Resource Name) Values

PLOT2D_COLOR_PTS_INTERACTIVELY

(N/A)

int N/A TRUE

PLOT2D_DELETE_PTS_INTERACTIVELY

(N/A)

int N/A TRUE

XVW_PLOT2D_COLOR_ORIGINATION

(plot2DColorOrigination)

int KPLOT2D_COLOR_FROM_FORE-

GROUND

KPLOT2D_COLOR_FROM_FOREGROUND or

symbol index

KPLOT2D_COLOR_FROM_DAT A

XVW_PLOT2D_DATA_MAX_X

(N/A)

double 1.0 the maximum X world coordinate value

(read only)

XVW_PLOT2D_DATA_MAX_Y

(N/A)

double 1.0 the maximum Y world coordinate value

(read only)

XVW_PLOT2D_DATA_MIN_X

(N/A)

double 0.0 the minimum X world coordinate value

(read only)

XVW_PLOT2D_DATA_MIN_Y

(N/A)

double 0.0 the minimum Y world coordinate value

(read only)

XVW_PLOT2D_DEPTH_OFFSET

(N/A)

int 0 0 < value < depth of data object value seg-

ment

XVW_PLOT2D_ELEMENTS_OFFSET

(N/A)

int 0 value < number of elements in data object

value segment

XVW_PLOT2D_HEIGHT_OFFSET

(N/A)

int 0 0 < value < height of data object value

segment

XVW_PLOT2D_HIGHLIGHTCOLOR

(plot2DHighlightColor)

char * "red" any valid color name: see

/usr/lib/X11/rgb.txt or Section 7.1.1 of

The XLib Programming Manual by

Adrian Nye

XVW_PLOT2D_PLOTFILE

(N/A)

char * NULL any valid input file

XVW_PLOT2D_PLOTOBJ

(N/A)

kobject NULL any valid data object

6-18

Xvplot Program Services Volume III - Chapter 6

Descriptions of Plot2D Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PLOT2D_PLOTSIZE

(N/A)

int 0 values > 0

XVW_PLOT2D_PLOTTYPE

(plot2DPlotType)

int KPLOT2D_LINEPLOT

KPLOT2D_BARGRAPH

KPLOT2D_DISCRETE

KPLOT2D_POLYMARKER

KPLOT2D_LINEMARKER

XVW_PLOT2D_POINTS

(N/A)

Coord * NULL array of Coords defining data points for

2D plot

XVW_PLOT2D_ROI

(N/A)

Coord * NULL Those points that fall inside the specified

ROI

XVW_PLOT2D_ROI_POLICY

(imageRoiPolicy)

int KPLOT2D_ROI_INSIDE KPLOT2D_ROI_INSIDE

KPLOT2D_ROI_OUTLINE

KPLOT2D_ROI_OUTSIDE

XVW_PLOT2D_ROI_SHAPE

(plot2DRoiShape)

int KPLOT2D_ROI_RECTANGLE KPLOT2D_ROI_RECTANGLE

KPLOT2D_ROI_POLYLINE

KPLOT2D_ROI_CIRCLE

KPLOT2D_ROI_ELLIPSE

KPLOT2D_ROI_LINE

KPLOT2D_ROI_FREEHAND

XVW_PLOT2D_TIME_OFFSET

(N/A)

int 0 value < time size of data object value seg-

ment

XVW_PLOT2D_WIDTH_OFFSET

(N/A)

int 0 0 < value < width of data object value seg-

ment

XVW_PLOT2D_X_ORIENTATION

(N/A)

int KWIDTH KWIDTH

KHEIGHT

KDEPTH

KTIME

KELEMENTS

D.3. Complete Resource Set of the 2D Plot Object

The inheritance tree of the 2D plot object is as follows:

manager -> graphics -> color -> plot2D

The complete resource set for the 2D plot object includes:

1. The 2D plot attribute resource set, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

6-19

Xvplot Program Services Volume III - Chapter 6

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

D.4. Example Using the 2D Plot Visual Object

Examples of programs using the 2D Plot object can be found in $ENVISION/examples/plot/. One of
these is as follows.

#include <envision.h>

/*
* This simple program plots the data contained in
* a VIFF file, in red on a black background
*/

void main(
int argc,
char *argv[])

{
xvobject plot;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{
kerror(NULL, "main", "Cannot open display");
kexit(KEXIT_FAILURE);
}

/*
* create the plot object; set the file that contains the data
* for the plot, and set the foreground color.
*/

plot = xvw_create_plot2d(NULL, "plot");
xvw_set_attributes(plot,

XVW_PLOT2D_PLOTFILE, "image:featheye",
XVW_FOREGROUND_COLOR, "red",

NULL);

/* want the background to be black */
xvw_set_attribute(xvw_parent(plot), XVW_BACKGROUND_COLOR, "black");

/* display and run */
xvf_run_form();

}

6-20

Xvplot Program Services Volume III - Chapter 6

E. The 3D Plot Object

Figure 3: The 3D plot object supports a number of different plot types, including the line plot shown
here. Its internal menuforms (not shown) allow the user to change a wide variety of 3D plot attributes.

E.1. xvw_create_plot3d() — create a 3D plot object

Synopsis
xvobject xvw_create_plot3d(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the 3D plot object (for use in app-defaults files, etc)

Returns
Returns the created 3D plot xvobject, or NULL upon failure

Description
A 3D plot object is used to display a 3D plot. A variety of plot types are supported, including line
plots, mesh plots, scatter plots, 2D and 3D contour plots, impulse plots, horizon plots, wireframe plots,
and shaded plots.

Ideally, the 3D plot object would be used in conjunction with a 3D axis object, where both were cre-
ated as children of an area object so that a coordinated world coordinate view is automatically sup-
ported. Unfortunately, the 3D axis object has not yet been developed (sorry, folks).

6-21

Xvplot Program Services Volume III - Chapter 6

E.2. Attributes of the 3D Plot Object

Summary of Plot3D Attributes

Attribute Description

XVW_PLOT3D_COLOR_ORIGINATION This attribute is only used when the plot data is provided via a kobject

specified using the XVW_PLOT3D_PLOTOBJ or XVW_PLOT3D_PLOTFILE

attributes. It dictates whether the color of the plot is to be specified by

the plot foreground color or by the plot data itself. If the entire plot is

to appear in a particular color, set this attribute to

KPLOT3D_COLOR_FROM_FOREGROUND; then, specify the desired color

using the XVW_FOREGROUND or XVW_FOREGROUND_COLOR attributes. If

each point in the data set is to have its color specified individually, set

this attribute to KPLOT3D_COLOR_FROM_DATA . The color of each point

in the plot will be dictated by the values stored in the kobject; see ???

for details on how the color is interpreted from the data of the kobject.

XVW_PLOT3D_CONTOUR_LEVELS This attribute may be set to an array of Real values that specify the Z

values of the contour levels to be drawn when XVW_PLOT3D_PLOTTYPE

is set to KPLOT3D_CONTOUR_3D or KPLOT3D_CONTOUR_2D . When

using this attribute, the XVW_PLOT3D_NUM_CONTOUR_LEVELS attribute

must be used to specify the size of the Real array.

XVW_PLOT3D_DATA_MAX_X This read-only attribute returns the maximum of the X coordinates in

the 3D plot data currently in the Coord array specified with

XVW_PLOT3D_POINTS .

XVW_PLOT3D_DATA_MAX_Y This read-only attribute returns the maximum of the Y coordinates in

the 3D plot data currently in the Coord array specified with

XVW_PLOT3D_POINTS .

XVW_PLOT3D_DATA_MAX_Z This read-only attribute returns the maximum of the Z coordinates in

the 3D plot data currently in the Coord array specified with

XVW_PLOT3D_POINTS .

XVW_PLOT3D_DATA_MIN_X This read-only attribute returns the minimum of the X coordinates in

the 3D plot data currently in the Coord array specified with

XVW_PLOT3D_POINTS .

XVW_PLOT3D_DATA_MIN_Y This read-only attribute returns the minimum of the Y coordinates in

the 3D plot data currently in the Coord array specified with

XVW_PLOT3D_POINTS .

XVW_PLOT3D_DATA_MIN_Z This read-only attribute returns the minimum of the Z coordinates in

the 3D plot data currently in the Coord array specified with

XVW_PLOT3D_POINTS .

XVW_PLOT3D_DEPTH_OFFSET This attribute is used in conjunction with the XVW_PLOT3D_X_ORIEN-

TATION and XVW_PLOT3D_Y_ORIENTATION attributes. When neither

of these attributes is set to KDEPTH , it is used to specify the depth offset

at which the X and Y coordinates for the plot data are to be extracted.

6-22

Xvplot Program Services Volume III - Chapter 6

Summary of Plot3D Attributes

Attribute Description

XVW_PLOT3D_ELEMENTS_OFFSET This attribute is used in conjunction with the XVW_PLOT3D_X_ORIEN-

TATION and XVW_PLOT3D_Y_ORIENTATION attributes. When neither

of these attributes is set to KELEMENTS , it is used to specify the ele-

ments offset at which the X and Y coordinates for the plot data are to

be extracted.

XVW_PLOT3D_HEIGHT_OFFSET This attribute is used in conjunction with the XVW_PLOT3D_X_ORIEN-

TATION and XVW_PLOT3D_Y_ORIENTATION attributes. When neither

of these attributes is set to KHEIGHT , it is used to specify the height off-

set at which the X and Y coordinates for the plot data are to be

extracted.

XVW_PLOT3D_NUM_CONTOUR_LEVELS The number of contour levels to be drawn when XVW_PLOT3D_PLOT-

TYPE is set to KPLOT3D_CONTOUR_3D or KPLOT3D_CONTOUR_2D . If

set to the default (-1) value, there will be one contour level drawn for

each Z value of the plot data, where the Z values of the contour levels

are calculated automatically. If the number of unique Z values in the

plot data exceeds the number of colors that can be displayed, there will

be one contour level drawn for each color that can be displayed. When

the KPLOT3D_CONTOUR_LEVELS is set to an array of Real values that

specify the Z values of the contour levels, XVW_PLOT3D_NUM_CON-

TOUR_LEVELS is used to indicate the size of the array; If

KPLOT3D_CONTOUR_LEVELS is set to NULL (the default value) and

XVW_PLOT3D_NUM_CONTOUR_LEVELS is set to a value greater than 0,

the Z values of the contour levels will be automatically calculated.

XVW_PLOT3D_PLOTFILE The file containing the 3D plot data to be displayed. Note that this

attribute is mutually exclusive with XVW_PLOT3D_PLOTOBJ; use one or

the other, not both.

XVW_PLOT3D_PLOTOBJ The data object containing the 3D plot data to be displayed. Note that

this attribute is mutually exclusive with XVW_PLOT3D_PLOTFILE; use

one or the other, not both.

XVW_PLOT3D_PLOTSIZE This is the number of data points contained in the Coord array specified

by the attribute XVW_PLOT3D_POINTS . Note that you must use this

attribute to specify the number of points prior to specifying the data

points with XVW_PLOT3D_POINTS .

XVW_PLOT3D_PLOTTYPE This attribute indicates how the plot is to be displayed. Choices

include: KPLOT3D_LINEPLOT KPLOT3D_MESH KPLOT3D_SCATTER

KPLOT3D_CONTOUR_3D KPLOT3D_CONTOUR_2D KPLOT3D_IMPULSE

KPLOT3D_PHONG_SHADING KPLOT3D_GHOURAUD_SHADING

KPLOT3D_CONSTANT_SHADING KPLOT3D_HORIZON KPLOT3D_WIRE-

FRAME

6-23

Xvplot Program Services Volume III - Chapter 6

Summary of Plot3D Attributes

Attribute Description

XVW_PLOT3D_PLOTWIDTH This attribute dictates the number of data points in each row to be plot-

ted. Thus, if there are 100 data points specified by

XVW_PLOT3D_PLOTSIZE and XVW_PLOT3D_PLOTWIDTH is set to 2, this

implies that the 3D plot has 50 continuous lines, each with 2 data

points. Alternatively, if XVW_PLOT3D_PLOTWIDTH was set to 25, this

would imply that the same 100 data triplets were to be plotted as 4 con-

tinuous lines, each with 25 data points.

XVW_PLOT3D_POINTS This is the array of coordinates defining the 3D data points in the plot.

It is an array of type Coord, where the Coord

XVW_PLOT3D_SHADETYPE For 3D plots that are shaded, ie, when the XVW_PLOT3D_PLOTTYPE is

set to one of: KPLOT3D_PHONG_SHADING KPLOT3D_GHOURAUD_SHAD-

ING or KPLOT3D_CONSTANT_SHADING , this attribute specifies what

part of the data is to dictate the shading.

KPLOT3D_SHADE_ELEVATION specifies that shading is to be done on

elevation, ie, using the z value of each data point as defined by its

Coord structure.

KPLOT3D_SHADE_IMAGERY specifies taht shading is to be done on

imagery (or color) ie, using the d value of each data point as defined by

its Coord structure.

When KPLOT3D_SHADE_NORMAL is used, the normal to each data point

is computed, and shading is done using the normals.

XVW_PLOT3D_TIME_OFFSET This attribute is used in conjunction with the XVW_PLOT3D_X_ORIEN-

TATION and XVW_PLOT3D_Y_ORIENTATION attributes. When neither

of these attributes is set to KTIME , it is used to specify the time offset at

which the X and Y coordinates for the plot data are to be extracted.

XVW_PLOT3D_WIDTH_OFFSET This attribute is used in conjunction with the XVW_PLOT3D_X_ORIEN-

TATION and XVW_PLOT3D_Y_ORIENTATION attributes. When neither

of these attributes is set to KWIDTH , it is used to specify the width offset

at which the X and Y coordinates for the plot data are to be extracted.

XVW_PLOT3D_X_ORIENTATION This attribute is only used when the plot data is provided via a kobject

specified using the XVW_PLOT3D_PLOTOBJ or XVW_PLOT3D_PLOTFILE

attributes; furthermore, it only applies when the plot data is stored in

the value segment of the data object. It dictates how the X coordinates

of the 3D plot data is to be extracted from the value segment of the data

object. The 3D plot data is always extracted as a surface, but that sur-

face may have its X coordinates oriented down width, height, depth,

time, or elements.

XVW_PLOT3D_Y_ORIENTATION This attribute is only used when the plot data is provided via a kobject

specified using the XVW_PLOT3D_PLOTOBJ or XVW_PLOT3D_PLOTFILE

attributes; furthermore, it only applies when the plot data is stored in

the value segment of the data object. It dictates how the Y coordinates

of the 3D plot data is to be extracted from the value segment of the data

object. The 3D plot data is always extracted as a surface, but that sur-

face may have its Y coordinates oriented down width, height, depth,

time, or elements.

6-24

Xvplot Program Services Volume III - Chapter 6

Descriptions of Plot3D Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PLOT3D_COLOR_ORIGINATION

(plot3DColorOrigination)

int KPLOT3D_COLOR_FROM_FORE-

GROUND

KPLOT3D_COLOR_FROM_FOREGROUND or

symbol index

KPLOT3D_COLOR_FROM_DAT A

XVW_PLOT3D_CONTOUR_LEVELS

(plot3DContourLevels)

Real * NULL any array of Real values

XVW_PLOT3D_DATA_MAX_X

(N/A)

double 1.0 The maximum X world coordinate value

(read only)

XVW_PLOT3D_DATA_MAX_Y

(N/A)

double 1.0 The maximum Y world coordinate value

(read only)

XVW_PLOT3D_DATA_MAX_Z

(N/A)

double 1.0 The maximum Z world coordinate value

(read only)

XVW_PLOT3D_DATA_MIN_X

(N/A)

double 1.0 The minimum X world coordinate value

(read only)

XVW_PLOT3D_DATA_MIN_Y

(N/A)

double 1.0 The minimum Y world coordinate value

(read only)

XVW_PLOT3D_DATA_MIN_Z

(N/A)

double 1.0 The minimum Z world coordinate value

(read only)

XVW_PLOT3D_DEPTH_OFFSET

(N/A)

int 0 0 < value < depth of data object value seg-

ment

XVW_PLOT3D_ELEMENTS_OFFSET

(N/A)

int 0 0 < value < elements of data object value

segment

XVW_PLOT3D_HEIGHT_OFFSET

(N/A)

int 0 0 < value < height of data object value

segment

XVW_PLOT3D_NUM_CONTOUR_LEVELS

(plot3DContourLevelNum)

int -1 value = -1, or value > 0

XVW_PLOT3D_PLOTFILE

(N/A)

char * NULL any valid input file

XVW_PLOT3D_PLOTOBJ

(N/A)

kobject NULL any valid data object

XVW_PLOT3D_PLOTSIZE

(N/A)

int 0 values > 0

XVW_PLOT3D_PLOTTYPE

(plot3DPlotType)

int KPLOT3D_LINEPLOT KPLOT3D_LINEPLOT

KPLOT3D_MESH

KPLOT3D_SCATTER

KPLOT3D_CONTOUR_3D

KPLOT3D_CONTOUR_2D

KPLOT3D_IMPULSE

KPLOT3D_PHONG_SHADING

KPLOT3D_GHOURAUD_SHADING

KPLOT3D_CONSTANT_SHADING

KPLOT3D_HORIZON

KPLOT3D_WIREFRAME

6-25

Xvplot Program Services Volume III - Chapter 6

Descriptions of Plot3D Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PLOT3D_PLOTWIDTH

(N/A)

int N/A 0 < value <= XVW_PLOT3D_PLOTSIZE

XVW_PLOT3D_POINTS

(N/A)

Coord * NULL array of Coords defining data points for

3D plot

XVW_PLOT3D_SHADETYPE

(plot3DShadeType)

int KPLOT3D_SHADE_ELEVATION KPLOT3D_SHADE_IMAGERY

KPLOT3D_SHADE_ELEVATION

KPLOT3D_SHADE_NORMAL

XVW_PLOT3D_TIME_OFFSET

(N/A)

int 0 0 < value < time of data object value seg-

ment

XVW_PLOT3D_WIDTH_OFFSET

(N/A)

int 0 0 < value < width of data object value seg-

ment

XVW_PLOT3D_X_ORIENTATION

(N/A)

int KWIDTH KWIDTH

KHEIGHT

KDEPTH

KTIME

KELEMENTS

XVW_PLOT3D_Y_ORIENTATION

(N/A)

int KHEIGHT KWIDTH

KHEIGHT

KDEPTH

KTIME

KELEMENTS

E.3. Complete Resource Set of the 3D Plot Object

The inheritance tree of the 3D plot object is as follows:

manager -> graphics -> color -> plot3D

Accordingly, the complete resource set for the 3D plot object includes:

1. The 3D plot attribute resource set, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

6-26

Xvplot Program Services Volume III - Chapter 6

E.4. Example Using the 3D Plot Visual Object

Examples of programs using the 3D Plot object can be found in $ENVISION/examples/plot/. One of
these is as follows.

#include <envision.h>

/*
* This program creates a constant shaded 3D plot from the info stored in
* a VIFF file.
*/

void main(
int argc,
char *argv[])

{
xvobject plot3d, area;
kobject data_object;
char *filename = "image:flow";

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* open the data object defined by file */
data_object = kpds_open_input_object(filename);

/* create a 3D color mesh plot from the VIFF file */
area = xvw_create_area(NULL, "area");
xvw_set_attributes(area,

XVW_WIDTH, 500,
XVW_HEIGHT, 500,
NULL);

plot3d = xvw_create_plot3d(area, "Plot3D");
xvw_set_attributes(plot3d,

XVW_GRAPHICS_ATTACH, plot3d,
XVW_PLOT3D_PLOTOBJ, data_object,
XVW_PLOT3D_PLOTTYPE, KPLOT3D_MESH,
XVW_PLOT3D_COLOR_ORIGINATION, KPLOT3D_COLOR_FROM_DATA,
NULL);

/* display & run; there is no way to exit the program but ˆC */
xvf_run_form();

}

F. The Axis Attributes

The xvplot library offers a 2D axis object that can be used to put axes on 2D plots. Its three dimensional coun-
terpart, the 3D axis object, is still under design and is not available with VisiQuest 2001. Nevertheless, 2D and
3D axis objects have a large number of attributes in common, which are referred to as general axis attributes.

6-27

Xvplot Program Services Volume III - Chapter 6

These attributes are described here.

F.1. General Axis Attributes

These are general attributes for the axis.

Summary of General Axis Class Attributes

Attribute Description

XVW_AXIS_AXIS_MODE This attribute specifies the scale with which axes will be drawn. The

scale may be linear or log; natural log is planned for the future but is

not implemented as of yet.

XVW_AXIS_BEGIN_AXIS This parameter specifies where the axis begins. It is specified as a

Coord structure representing a 3D point (x,y,z), where values of x, y,

and z must be between 0 and 1.

Default begin pt for 2D/3D axis object (X axis): (0,0,0).

Default begin pt for 2D/3D axis object (Y axis): (0,0,0).

Default begin pt for 3D axis object (Z axis): (0,0,0).

For example, suppose we wish to prevent a 2D X axis from displaying

tic marks, grid, and numerical labels above 10% of the axis range. First,

the X axis is obtained from the 2D X axis object using

XVW_AXIS2D_AXIS_X . Then, the XVW_AXIS_BEGIN_AXIS attribute is

used to specify the begin point of the X axis as (0.1, 0.0, 0.0).

XVW_AXIS_END_AXIS This parameter specifies where the axis ends. It is specified as a Coord

structure representing a 3D point (x,y,z), where values of x, y, and z

must be between 0 and 1.

Default end pt for 2D/3D axis object (X axis): (1,0,0).

Default end pt for 2D/3D axis object (Y axis): (0,1,0).

Default end pt for 3D axis object (Z axis): (0,0,1).

For example, suppose we wish to prevent a 2D X axis from displaying

tic marks, grid, and numerical labels past 90% of the axis range. First,

the X axis is obtained from the 2D X axis object using

XVW_AXIS2D_AXIS_X . Then, the XVW_AXIS_BEGIN_AXIS attribute is

used to specify the end point of the X axis as (0.9, 0.0, 0.0).

XVW_AXIS_LABEL The text with which to label the axis.

XVW_AXIS_NUMBER_MINOR_TICS The number of minor tics to be desired.

XVW_AXIS_TIC_JUSTIFICATION Whether the major and minor axis tic marks appear to the outside of the

axis line, to the inside of the axis line, or centered with the axis line

running through the middle.

6-28

Xvplot Program Services Volume III - Chapter 6

Descriptions of General Axis Class Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_AXIS_AXIS_MODE

(axisAxisMode)

int KAXIS_LINEAR KAXIS_LINEAR

KAXIS_LOG

XVW_AXIS_BEGIN_AXIS

(N/A)

Coord (0.0,0.0,0.0) a Coord structure with values 0.0 - 1.0

specified for the (x, y, z); 2D axes will

always have the z value set to 0.0.

XVW_AXIS_END_AXIS

(N/A)

Coord (1.0,1.0,1.0) a Coord structure with values 0.0 - 1.0

specified for the (x, y, z); 2D axes will

always have the z value set to 0.0.

XVW_AXIS_LABEL

(N/A)

char * "Axis" printable text

XVW_AXIS_NUMBER_MINOR_TICS

(axisNumberMinorTics)

int 0 value >= 0

XVW_AXIS_TIC_JUSTIFICATION

(axisTicJustification)

int KAXIS_INSIDE KAXIS_INSIDE

KAXIS_CENTERED

KAXIS_OUTSIDE

F.2. Control of Displayed Axis Elements

An axis is made up of several components; you have control over which of these components (if any) are dis-
played at any giv en time.

Summary of Attributes For Controlling Displayed Axis Elements

Attribute Description

XVW_AXIS_SHOW_AXIS Dictates whether or not the axis itself is displayed.

XVW_AXIS_SHOW_AXIS_LABEL Dictates whether or not the axis label is displayed.

XVW_AXIS_SHOW_BOX Dictates whether or not the axis box will be displayed.

XVW_AXIS_SHOW_MAJOR_GRID Dictates whether or not a grid will be drawn using the

major tics to specify location of grid lines.

XVW_AXIS_SHOW_MINOR_GRID Dictates whether or not a grid will be drawn using the

minor tics to specify location of grid lines.

XVW_AXIS_SHOW_NUMERICAL_LABELS Dictates whether or not the numerical labels are displayed,

marking the world coordinate values at the major tic marks.

XVW_AXIS_SHOW_TICS Dictates whether or not tic marks are displayed.

XVW_AXIS_SHOW_ZERO_LINE Dictates whether or not a line should be drawn to

mark the location of zero on the axis.

6-29

Xvplot Program Services Volume III - Chapter 6

Descriptions of Attributes For Controlling Displayed Axis Elements

Attribute Type Default Legal
(Resource Name) Values

XVW_AXIS_SHOW_AXIS

(axisShowAxis)

int TRUE TRUE/FALSE

XVW_AXIS_SHOW_AXIS_LABEL

(axisShowAxisLabel)

int TRUE TRUE/FALSE

XVW_AXIS_SHOW_BOX

(axisShowBox)

int TRUE TRUE/FALSE

XVW_AXIS_SHOW_MAJOR_GRID

(axisShowMajorGrid)

int FALSE TRUE/FALSE

XVW_AXIS_SHOW_MINOR_GRID

(axisShowMinorGrid)

int FALSE TRUE/FALSE

XVW_AXIS_SHOW_NUMERICAL_LABELS

(axisShowNumericalLabel)

int TRUE TRUE/FALSE

XVW_AXIS_SHOW_TICS

(axisShowTics)

int TRUE TRUE/FALSE

XVW_AXIS_SHOW_ZERO_LINE

(axisShowZeroLine)

int TRUE TRUE/FALSE

F.3. Control of Labels

A variety of attributes are available offering control over the labels of the axis.

Summary of Attributes That Control Axis Labels

Attribute Description

XVW_AXIS_LABELED_INTERVAL The labeling interval between each major tic mark.

XVW_AXIS_LABELED_MAX This is the largest value which is labeled on the axis; it may differ from

the actual world coordinate maximum. For example, suppose that a 2D

plot has X values which range from 0.0 to 0.789; it may be nicer to

have the X axis labeled from 0 to 1, in which case

XVW_AXIS_LABELED_MAX would be set to 1.0.

XVW_AXIS_LABELED_MIN This is the smallest value which is labeled on the axis; it may differ

from the actual world coordinate minimum. For example, suppose that

a 2D plot has X values which range from 0.214 to 1.0; it may be nicer

to have the X axis labeled from 0 to 1, in which case

XVW_AXIS_LABELED_MIN would be set to 0.0.

6-30

Xvplot Program Services Volume III - Chapter 6

Summary of Attributes That Control Axis Labels

Attribute Description

XVW_AXIS_LABELING_MODE This attribute controls which of:

(1) the label interval,

(2) the number of steps, or

(3) the minimum & maximum values

dictate how the numbers are labeled on the axis.

There are five labeling modes available:

KAXIS_SET_LABELED_INTERVAL- The specified label interval is used

to control labelling; the number of steps is calculated from the interval.

The maximum and minimum may be changed to fit the interval.

KAXIS_SET_NUMBER_STEPS- The specified number of steps is used to

control labelling; the label interval is calculated from the number of

steps. The maximum and minimum may be changed to fit the step

number.

KAXIS_SET_INTERVAL_STEPS- The specified label interval and num-

ber of steps are used. The maximum and minimum may be changed to

fit the label interval and number of steps.

KAXIS_SET_MAX_MIN- The specified maximum and minimum are

used. The label interval will be a multiple of 1, 2, 4 and 5 and the num-

ber of steps adjusted accordingly.

KAXIS_SET_DEFAULT_MODE- Similar to maximum and minimum, this

is used as default mode for the initialization purposes. It differs in that

the maximum and minimum will be adjusted so that they are even mul-

tiples of the label interval.

6-31

Xvplot Program Services Volume III - Chapter 6

Summary of Attributes That Control Axis Labels

Attribute Description

XVW_AXIS_NICE_LABELS When set to TRUE, labels of the axis will follow these rules:

1) Minimum will be a even multiple of the labeled interval.

2) Maximum will be a even multiple of the labeled interval and will be

equal to the minimum + number of steps * label interval.

3) Each major tic label will be a even multiple of the labeled interval.

When FALSE, the labels of the axis will follow these rules:

1) Minimum may or may not be a even multiple of the labeled interval.

2) Maximum may or may not be a even multiple of the labeled interval

and may not even be displayed.

3) Each major tic label may or may not be a even multiple of the

labeled interval.

4) If the number of steps may or may not be an even multiple of the

range divided by the interval size.

Note: when this attribute is set from FALSE to TRUE and back again,

the labels will be re-adjusted and will not be exactly the same each

time.

XVW_AXIS_NUMBER_STEPS The number of steps to take starting at the minimum value. This

parameter will control the number of major tics which is this value + 1.

XVW_AXIS_NUMERICAL_LABELS_FORMAT This controls how the numerical labels are displayed. The format is the

same as for printf(). If a numerical value is 1.34 and the format value is

%g, the label will be displayed as 1.34. However, if the format is %f

the label will be display as 1.340000. You can not specify string for-

mats like %s and %c.

XVW_AXIS_RESTORE_LABELS Setting this action attribute will cause the numeric labels on the axes to

be restored to the actual minimum and maximum values of the world

coordinates. Note that the labelled maximum and minimum could have

been changed to something other than the actual minimum and maxi-

mum values with the use of the XVW_AXIS_LABELED_MIN and/or

XVW_AXIS_LABELED_MAX . Thus, XVW_AXIS_RESTORE_LABELS is

used to restore the original labelled values.

Descriptions of Attributes That Control Axis Labels

Attribute Type Default Legal
(Resource Name) Values

XVW_AXIS_LABELED_INTERVAL

(N/A)

double 0.2 world coordinate values > 0.0

XVW_AXIS_LABELED_MAX

(N/A)

double 1.0 any double world coordinate value

XVW_AXIS_LABELED_MIN

(N/A)

double 0.0 any double world coordinate value

6-32

Xvplot Program Services Volume III - Chapter 6

Descriptions of Attributes That Control Axis Labels

Attribute Type Default Legal
(Resource Name) Values

XVW_AXIS_LABELING_MODE

(N/A)

int KAXIS_SET_DEFAULT_MODE KAXIS_SET_LABELED_INTERVAL

KAXIS_SET_NUMBER_STEPS

KAXIS_SET_INTERVAL_STEPS

KAXIS_SET_MAX_MIN

KAXIS_SET_DEFAULT_MODE

XVW_AXIS_NICE_LABELS

(axisNiceLabels)

int FALSE TRUE/FALSE

XVW_AXIS_NUMBER_STEPS

(N/A)

double 5.0 value > 0.0

XVW_AXIS_NUMERICAL_LABELS_FORMAT

(N/A)

char * "%g" standard printf() formatting strings

XVW_AXIS_RESTORE_LABELS

(N/A)

int N/A TRUE

F.4. Line Widths & Line Types

The line widths and line types are settable on the major and minor grids. Line widths range from none (invisi-
ble) to extra wide. There are seven line types available, offering a variety of possibilities for grid drawing.

Summary of Attributes That Control Grid Lines

Attribute Description

XVW_AXIS_MAJOR_GRID_LINE_TYPE The line type with which the major grid is drawn.

XVW_AXIS_MAJOR_GRID_LINE_WIDTH The line width with which the major grid is drawn.

XVW_AXIS_MINOR_GRID_LINE_TYPE The line type with which the minor grid is drawn.

XVW_AXIS_MINOR_GRID_LINE_WIDTH The line width with which the minor grid is drawn.

Descriptions of Attributes That Control Grid Lines

Attribute Type Default Legal
(Resource Name) Values

XVW_AXIS_MAJOR_GRID_LINE_TYPE

(axisMajorGridLineType)

int KLINE_GRID_DOTTED KLINE_SOLID

KLINE_DOTTED

KLINE_DOT_DASH

KLINE_SHORT_DASH

KLINE_LONG_DASH

KLINE_ODD_DASH

KLINE_GRID_DOTTED

6-33

Xvplot Program Services Volume III - Chapter 6

Descriptions of Attributes That Control Grid Lines

Attribute Type Default Legal
(Resource Name) Values

XVW_AXIS_MAJOR_GRID_LINE_WIDTH

(axisMajorGridLineWidth)

int KLINE_MEDIUM_FINE KLINE_NONE

KLINE_EXTRA_FINE

KLINE_FINE

KLINE_MEDIUM_FINE

KLINE_MEDIUM

KLINE_MEDIUM_WIDE

KLINE_WIDE

KLINE_EXTRA_WIDE

XVW_AXIS_MINOR_GRID_LINE_TYPE

(axisMinorGridLineType)

int KLINE_GRID_DOTTED KLINE_SOLID

KLINE_DOTTED

KLINE_DOT_DASH

KLINE_SHORT_DASH

KLINE_LONG_DASH

KLINE_ODD_DASH

KLINE_GRID_DOTTED

XVW_AXIS_MINOR_GRID_LINE_WIDTH

(axisMinorGridLineWidth)

int KLINE_EXTRA_FINE KLINE_NONE

KLINE_EXTRA_FINE

KLINE_FINE

KLINE_MEDIUM_FINE

KLINE_MEDIUM

KLINE_MEDIUM_WIDE

KLINE_WIDE

KLINE_EXTRA_WIDE

F.5. Setting Colors of Axis Elements

You may set the foreground color of various parts of the axis using either the name string of a color or a pixel
value. Names of valid color name strings can be found by looking at /usr/lib/X11/rgb.txt, but be aware that the
presence of a color name string in this file does not guarantee that the color will be available on a particular X
server. Note that all attributes involving a color name will be over-ridden by their counterparts that involve a
pixel value.

Summary of Attributes For Setting Color on Axes

Attribute Description

XVW_AXIS_AXIS_COLOR The string that specifies the name of the desired color for the axis.

XVW_AXIS_AXIS_PIXEL The pixel value that defines the desired color for the axis.

XVW_AXIS_BOX_COLOR The string that specifies the name of the desired color for the axis box.

XVW_AXIS_BOX_PIXEL The pixel value that defines the desired color for the box.

XVW_AXIS_MAJOR_GRID_COLOR The string that specifies the name of the desired color for the major

grid.

6-34

Xvplot Program Services Volume III - Chapter 6

Summary of Attributes For Setting Color on Axes

Attribute Description

XVW_AXIS_MAJOR_GRID_PIXEL The pixel value that defines the desired color for the major grid.

XVW_AXIS_MINOR_GRID_COLOR The string that specifies the name of the desired color for the minor

grid.

XVW_AXIS_MINOR_GRID_PIXEL The pixel value that defines the desired color for the minor grid.

XVW_AXIS_NUMERICAL_LABELS_COLOR The string that specifies the name of the desired color for the numerical

labels.

XVW_AXIS_NUMERICAL_LABELS_PIXEL The pixel value that defines the desired color for the numerical labels.

Descriptions of Attributes For Setting Color on Axes

Attribute Type Default Legal
(Resource Name) Values

XVW_AXIS_AXIS_COLOR

(axisAxisColor)

char * default fg color any valid color name: see

/usr/lib/X11/rgb.txt or Section 7.1.1 of

The XLib Programming Manual by

Adrian Nye

XVW_AXIS_AXIS_PIXEL

(N/A)

unsigned

long

default fg pixel

(XtDefaultFore-

ground)

any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

XVW_AXIS_BOX_COLOR

(axisBoxColor)

char * default foreground

color

any valid color name: see

/usr/lib/X11/rgb.txt or Section 7.1.1 of

The XLib Programming Manual by

Adrian Nye

XVW_AXIS_BOX_PIXEL

(N/A)

unsigned

long

default fg pixel

(XtDefaultFore-

ground)

any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

XVW_AXIS_MAJOR_GRID_COLOR

(axisMajorGridColor)

char * default foreground

color

any valid color name: see

/usr/lib/X11/rgb.txt or Section 7.1.1 of

The XLib Programming Manual by

Adrian Nye

XVW_AXIS_MAJOR_GRID_PIXEL

(N/A)

unsigned

long

default fg pixel

(XtDefaultFore-

ground)

any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

XVW_AXIS_MINOR_GRID_COLOR

(axisMinorGridColor)

char * default foreground

color

any valid color name: see

/usr/lib/X11/rgb.txt or Section 7.1.1 of

The XLib Programming Manual by

Adrian Nye

XVW_AXIS_MINOR_GRID_PIXEL

(N/A)

unsigned

long

default fg pixel

(XtDefaultFore-

ground)

any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

6-35

Xvplot Program Services Volume III - Chapter 6

Descriptions of Attributes For Setting Color on Axes

Attribute Type Default Legal
(Resource Name) Values

XVW_AXIS_NUMERICAL_LABELS_COLOR

(axisNumericalLabelsColor)

char * default foreground

color

any valid color name: see

/usr/lib/X11/rgb.txt or Section 7.1.1 of

The XLib Programming Manual by

Adrian Nye

XVW_AXIS_NUMERICAL_LABELS_PIXEL

(N/A)

unsigned

long

default fg pixel

(XtDefaultFore-

ground)

any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

F.6. Setting the Scale of Axes

Axes support both linear and log scaling.

Summary of Attributes That Control Axis Mode

Attribute Description

XVW_GRAPHICS_MODE_X Whether the X Axis is marked as linear or log 10 scale.

XVW_GRAPHICS_MODE_Y Whether the Y Axis is marked as linear or log 10 scale.

XVW_GRAPHICS_MODE_Z Whether the Z Axis is marked as linear or log 10 scale.

6-36

Xvplot Program Services Volume III - Chapter 6

Summary of Attributes That Control Axis Mode

Attribute Description

XVW_GRAPHICS_PROPORTIONAL When this attribute is set to KGRAPHICS_NONPROP , the scale in each

axis direction is determined by the world coordinate minimums and

maximums of the data. Thus, if the X values range from 0 to 1, and the

Y values range from 1 to 100, and the physical length of the X and Y

axes are the same, then the scale in the X direction (1) is much smaller

than the scale in the Y direction (100).

In contrast, when this attribute is set to KGRAPHICS_PROP_WINDOWED

or KGRAPHICS_PROP_NONWINDOWED , it causes the scale in each axis

direction to be the same. When a visual object is proportional, this

means that the minimum and maximum values across being displayed

as X and Y are found before the object is displayed. Then the mini-

mum and maximum are set on each axis so that the scale is the same.

If KGRAPHICS_PROP_WINDOWED is specified, then the center of the data

is determined along each axis and the minimum and maximum values

are set such that the data is in the center of the world coordinate space.

If KGRAPHICS_PROP_NONWINDOWED is specified, the range of numbers

covered, i.e, the minimum and maximum values are the same, by the X

and Y axes are the same. The "sense of proportion" conveyed by the

object is correct, but details of the object may be lost if the range

spanned by X varies greatly from that spanned by Y.

In some cases, proportional display not be a good method of display.

For example, suppose a 2D plot object has data displayed as X ranges

from 0 to 255, but the data displayed as Y ranges from 0 to 1. Obvi-

ously, the plot will not be very informative, as all the points will be

bunched against the X axis. In cases like this, non-proportional display

may be more useful.

Descriptions of Attributes That Control Axis Mode

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_MODE_X

(graphicsModeX)

int KGRAPHICS_LINEAR KGRAPHICS_LINEAR

KGRAPHICS_LOG10

XVW_GRAPHICS_MODE_Y

(graphicsModeY)

int KGRAPHICS_LINEAR KGRAPHICS_LINEAR

KGRAPHICS_LOG10

XVW_GRAPHICS_MODE_Z

(graphicsModeZ)

int KGRAPHICS_LINEAR KGRAPHICS_LINEAR

KGRAPHICS_LOG10

XVW_GRAPHICS_PROPORTIONAL

(graphicsProportional)

int KGRAPHICS_NONPROP KGRAPHICS_NONPROP

KGRAPHICS_PROP_WINDOWED

KGRAPHICS_PROP_NONWINDOWED

6-37

Xvplot Program Services Volume III - Chapter 6

G. The 2D Axis Object

Figure 4: The 2D Axis object provides an axis system for one or more 2D plots.

G.1. xvw_create_axis2d() — create a 2D axis object

Synopsis
xvobject xvw_create_axis2d(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the 2D axis object (for use in app-defaults files, etc)

Returns
The 2D axis object on success, NULL on failure

Description
The 2D axis object provides a set of X, Y axes for use with one or more 2D plot objects. In general,
the 2D axis object should be set as the visual object which controls the world view of its siblings; spec-
ify the 2D axis object as the controlling visual object when setting the XVW_GRAPHICS_ATTACH
attributes on its siblings.

6-38

Xvplot Program Services Volume III - Chapter 6

G.2. Attributes of the Axis2D Visual Object

Summary of Axis2D Attributes

Attribute Description

XVW_AXIS2D_AXIS_X This read-only attribute allows you to obtain

the axis object that serves as the X Axis.

XVW_AXIS2D_AXIS_Y This read-only attribute allows you to obtain

the axis object that serves as the Y Axis

XVW_AXIS2D_SHOW_AXIS_X The X axis is displayed when this attribute is set to TRUE;

it is not displayed when this attribute is set to FALSE.

XVW_AXIS2D_SHOW_AXIS_Y The Y axis is displayed when this attribute is set to TRUE;

it is not displayed when this attribute is set to FALSE.

Descriptions of Axis2D Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_AXIS2D_AXIS_X

(N/A)

xvobject NULL The axis object that is used as the X axis

(read only).

XVW_AXIS2D_AXIS_Y

(N/A)

xvobject NULL The axis object that is used as the Y axis

(read only).

XVW_AXIS2D_SHOW_AXIS_X

(axis2dShowAxisX)

int TRUE TRUE/FALSE

XVW_AXIS2D_SHOW_AXIS_Y

(axis2dShowAxisY)

int TRUE TRUE/FALSE

G.3. Complete Resource Set of the Axis2D Visual Object

The inheritance tree of the animation object is as follows:

manager -> graphics -> axis2D

Accordingly, the complete resource set for the 2D axis object includes:

1. The 2D axis attribute resource set, given above

2. The general axis attribute resource set, given in Section F, "The Axis Attributes"

3. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

4. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

6-39

Xvplot Program Services Volume III - Chapter 6

G.4. Example Using the Axis2D Visual Object

Examples of programs using the 2D Axis object can be found in $ENVISION/examples/plot/. One of
these is as follows.

#include <envision.h>

Coord data[4000];

void recompute_points PROTO((xvobject, kaddr, XEvent *, int *));

/*
* This example demonstrates how an area object can be used to provide
* a coordinated world coordinate system for a plot and a set of axes.
* It creates an area object, with a 2D plot and a set of 2D axes within
* it; it attaches the plot and the axes to the area object, so they
* have a coordinated world coordinate view, and keep that coordinated
* view even when the range of the plot changes.
*
* Click on the image to invoke the event handler which re-computes the
* sin curve plotted to a new range; the plot and the axis system will
* update together.
*/

#define PTNUM 50
void main(

int argc,
char *argv[])

{
xvobject parent, area, axis, plot;
int i, degrees;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{
kerror(NULL, "main", "Cannot open display");
kexit(KEXIT_FAILURE);
}

/*
* Generate initial sin curve to be plotted
*/
for (i = 0, degrees = 9; i < PTNUM; i++, degrees+=20)
{

data[i].x = i;
data[i].y = sin((double) kdegrees_radians(degrees));
data[i].d = KGRAPHICS_UNINITIALIZED;

}

/*
* create a parent for the area
*/
parent = xvw_create_manager(NULL, "parent");
xvw_set_attributes(parent,

XVW_WIDTH, 400,
XVW_HEIGHT, 400,
NULL);

6-40

Xvplot Program Services Volume III - Chapter 6

/*
* create a coordinated axis and plot object in an area object

*/
area = xvw_create_area(parent, "area");
xvw_set_attributes(area,

XVW_AREA_DISPLAY_DATE, FALSE,
XVW_AREA_TITLE_STRING, "2D Plot",

XVW_TACK_EDGE, KMANAGER_TACK_ALL,
XVW_BACKGROUND_COLOR, "black",
NULL);

/*
* create the axis system
*/
axis = xvw_create_axis2d(area, "axis");
xvw_set_attributes(axis,

XVW_GRAPHICS_ATTACH, axis,
XVW_GRAPHICS_VIEWPORT_MIN_X, 0.2,

XVW_GRAPHICS_VIEWPORT_MIN_Y, 0.2,
XVW_GRAPHICS_VIEWPORT_MAX_X, 0.9,
XVW_GRAPHICS_VIEWPORT_MAX_Y, 0.9,

NULL);

/*
* The viewport max and mins do not have to be set for the plot
* object, since it’s attached to the axis object. They will have the
* same values as the axis object, since the parent of the axis

* object is an area object. This is also true for the world
* coordinates; however it is the plot that is dictating these values
* (i.e. the maximum and minimum of the data being plotted) and the
* axis that is inheriting them.

*/
plot = xvw_create_plot2d(area, "plot coordinated");
xvw_set_attributes(plot,

XVW_GRAPHICS_ATTACH, axis,
XVW_PLOT2D_POINTS, data,

XVW_PLOT2D_PLOTSIZE, PTNUM,
XVW_FOREGROUND_COLOR, "Magenta",

NULL);

xvw_add_event(area, ButtonPressMask, recompute_points, plot);

xvf_run_form();
}

void recompute_points(
xvobject object,
kaddr client_data,
XEvent *event,
int *dispatch)

{
int i, degrees;
static int factor = 2;

xvobject plot_object = (xvobject) client_data;

/*
* Generate a new sin curve to be plotted
*/

6-41

Xvplot Program Services Volume III - Chapter 6

for (i = 0, degrees = 9; i < (PTNUM * factor); i++, degrees+=20)
{

data[i].x = i;
data[i].y = sin((double) kdegrees_radians(degrees));

data[i].d = KGRAPHICS_UNINITIALIZED;
}
xvw_set_attributes(plot_object,

XVW_PLOT2D_POINTS, data,
XVW_PLOT2D_PLOTSIZE, (PTNUM * factor),
NULL);

factor++;
if (factor > 5) factor = 1;

}

H. The Indicator Object

Figure 5: The indicator object simply provides a marker for a world coordinate position; the X and Y val-
ues of that position are displayed.

H.1. xvw_create_indicator() — creates an indicator object

Synopsis
xvobject xvw_create_indicator(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the indicator object (for use in app-defaults files, etc)

Returns
The indicator object on success, NULL on failure

6-42

Xvplot Program Services Volume III - Chapter 6

Description
An indicator is a marker with the additional capability of displaying the X and/or Y world coordinates
of the location at which the marker is placed. If desired, the indicator may also include a vertical line
(most often used with displaying X values) and/or a horizontal line (most often used with displaying Y
values). An indicator object is often used in conjunction with a 2D axis object to highlight a specific
data point.

H.2. Attributes of the Indicator Visual Object

Summary of Indicator Attributes

Attribute Description

XVW_INDICATOR_CONSTRAINT Indicates whether x and/or y values are to be displayed along with the

indicator. It is set specifying one of the allowed values or by OR’ing

the x and y values to do both. The KINDICATOR_CONSTRAINT_X value

is used to specify that the indicator should be constrained in the hori-

zontal direction; which means that no X position indication will be

given. The KINDICATOR_CONSTRAINT_Y value is used to specify that

the indicator should be constrained in the vertical direction; which

means that no Y position indication will be given. KINDICATOR_CON-

STRAINT_NONE , the default value, specifies that both vertical and hori-

zontal indication will be given.

XVW_INDICATOR_LINE This attribute indicates whether a x and/or y line should be displayed

along with the indicator. It is set specifying one of the allowed values

or by OR’ing the x and y values to do both. The KINDICATOR_HORI-

ZONTAL value specifies that a horizontal line should be displayed, span-

ning the width of the parent object. The KINDICATOR_VERTICAL

value specifies that a vertical line should be displayed, spanning the

height of the parent object.

XVW_INDICATOR_SHOW_XPOS Indicates whether the indicator should display its X position.

XVW_INDICATOR_SHOW_YPOS Indicates whether the indicator should display its Y position.

XVW_INDICATOR_XPOS This read-only attribute returns the stringvalue visual object that dis-

plays the X position of the indicator.If the XVW_INDICA-

TOR_SHOW_YPOS attribute is set to FALSE, the returned xvobject will

be NULL.

XVW_INDICATOR_XPOS_VALUE This attribute is the x position of the indicator in world coordinates.

XVW_INDICATOR_YPOS This read-only attribute returns the stringvalue visual object that dis-

plays the Y position of the indicator. If the XVW_INDICA-

TOR_SHOW_XPOS attribute is set to FALSE, the returned xvobject will

be NULL.

XVW_INDICATOR_YPOS_VALUE This attribute is the y position of the indicator in world coordinates.

6-43

Xvplot Program Services Volume III - Chapter 6

Descriptions of Indicator Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_INDICATOR_CONSTRAINT

(indicatorConstraint)

int KINDICATOR_CON-

STRAINT_NONE

KINDICATOR_CONSTRAINT_NONE

KINDICATOR_CONSTRAINT_X

KINDICATOR_CONSTRAINT_Y

XVW_INDICATOR_LINE

(indicatorLine)

int KINDICATOR_LINE_NONE KINDICATOR_LINE_NONE

KINDICATOR_LINE_VERTICAL

KINDICATOR_LINE_HORIZONTAL

KINDICATOR_LINE_BOTH

XVW_INDICATOR_SHOW_XPOS

(indicatorShowXpos)

int TRUE TRUE/FALSE

XVW_INDICATOR_SHOW_YPOS

(indicatorShowYpos)

int TRUE TRUE/FALSE

XVW_INDICATOR_XPOS

(N/A)

xvobject N/A (read only) string xvobject

XVW_INDICATOR_XPOS_VALUE

(N/A)

double KMAXFLOAT any double world coordinate value

XVW_INDICATOR_YPOS

(N/A)

xvobject N/A (read only) string xvobject

XVW_INDICATOR_YPOS_VALUE

(N/A)

double KMAXFLOAT any double world coordinate value

H.3. Complete Resource Set of the Indicator Visual Object

The inheritance tree of the indicator object is as follows:

manager -> graphics -> marker -> indicator

Accordingly, the complete resource set for the indicator object includes:

1. The indicator attribute resource set, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

H.4. Example using the Indicator Visual Object

An example program using the indicator visual object can be found in $ENVISION/examples/anno-
tate/03.indicator. This program is as follows.

#include <envision.h>

6-44

Xvplot Program Services Volume III - Chapter 6

/*
* This program creates a window with an area object, containing a
* 2D axis object and an indicator object. The indicator object displays
* its world coordinate position within the area object. The internal menuform
* for the indicator is displayed automatically, and may be used to set
* attributes of the indicator.
*
* The indicator allows you to interactively it by "grabbing" it with the
* left mouse button and moving it around inside the area object; it will
* update the world coordinate value that it displays as it is moved.
* The 2D axis object serves to provide a reference as to the world
* coordinate system.
*/

void main(
int argc,
char *argv[])

{
xvobject parent, area, axis, indicator;

/* initialize khoros program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* create a manager backplane
*/
parent = xvw_create_manager(NULL, "parent");

/*
* create an area object to provide a coordinated WC view

* for the 2D axis object and the indicator object
*/
area = xvw_create_area(parent, "area");
xvw_set_attributes(area,

XVW_AREA_DISPLAY_DATE, FALSE,
XVW_AREA_DISPLAY_TITLE, TRUE,

XVW_MAXIMUM_WIDTH, 300,
XVW_MAXIMUM_HEIGHT, 300,

NULL);

/*
* the 2D axis system will display the world coordinates
*/
axis = xvw_create_axis2d(area, "axis coordinated");
xvw_set_attributes(axis,

XVW_GRAPHICS_ATTACH, axis,
XVW_GRAPHICS_VIEWPORT_MIN_X, 0.1,
XVW_GRAPHICS_VIEWPORT_MIN_Y, 0.1,
XVW_GRAPHICS_VIEWPORT_MAX_X, 0.9,
XVW_GRAPHICS_VIEWPORT_MAX_Y, 0.9,
NULL);

6-45

Xvplot Program Services Volume III - Chapter 6

/*
* create the indicator object; attach it to the axis so
* that the axis will control the world view. set the X & Y
* position values, and set the foreground color.
*/
indicator = xvw_create_indicator(area, "indicator");
xvw_set_attributes(indicator,

XVW_GRAPHICS_ATTACH, axis,
XVW_INDICATOR_XPOS_VALUE, 0.5,
XVW_INDICATOR_YPOS_VALUE, 0.5,

XVW_FOREGROUND_COLOR, "pink",
NULL);

/* display internal menuform for indicator */
xvw_activate_menu(indicator);

/* display and run the program */
xvf_run_form();

}

6-46

Table of Contents

A. Overview of Visual Objects Related To Plotting 6-1
B. Issues Related to Plotting . 6-1

B.1. Interpretation of the Data Object . 6-2
B.1.1. Value Segment Interpretation . 6-2
B.1.2. Location Segment Interpretation 6-4

B.2. Plot Color . 6-6
C. The Area Object . 6-8

C.1. xvw_create_area() — create a graphics area object 6-9
C.2. Attributes of the Area Object . 6-10
C.3. Resource Set of the Area Object . 6-10
C.4. Example using the Area Visual Object 6-11

D. The 2D Plot Object . 6-13
D.1. xvw_create_plot2d() — create a 2D plot object 6-13
D.2. Attributes of the 2D Plot Object . 6-14
D.3. Complete Resource Set of the 2D Plot Object 6-19
D.4. Example Using the 2D Plot Visual Object 6-20

E. The 3D Plot Object . 6-21
E.1. xvw_create_plot3d() — create a 3D plot object 6-21
E.2. Attributes of the 3D Plot Object . 6-22
E.3. Complete Resource Set of the 3D Plot Object 6-26
E.4. Example Using the 3D Plot Visual Object 6-27

F. The Axis Attributes . 6-27
F.1. General Axis Attributes . 6-28
F.2. Control of Displayed Axis Elements 6-29
F.3. Control of Labels . 6-30
F.4. Line Widths & Line Types . 6-33
F.5. Setting Colors of Axis Elements . 6-34
F.6. Setting the Scale of Axes . 6-36

G. The 2D Axis Object . 6-38
G.1. xvw_create_axis2d() — create a 2D axis object 6-38
G.2. Attributes of the Axis2D Visual Object 6-39
G.3. Complete Resource Set of the Axis2D Visual Object 6-39
G.4. Example Using the Axis2D Visual Object 6-40

H. The Indicator Object . 6-42
H.1. xvw_create_indicator() — creates an indicator object 6-42
H.2. Attributes of the Indicator Visual Object 6-43
H.3. Complete Resource Set of the Indicator Visual Object 6-44
H.4. Example using the Indicator Visual Object 6-44

- i -

Xvplot Program Services Volume III - Chapter 6

This page left intentionally blank

- ii -

Program Services Volume III

Chapter 7

Xvannotate

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 7 - Xvannotate

A. Overview of Visual Objects Related To Annotation

A variety of annotations are supported by the xvannotate library. Text, lines, circles, rectangles, polylines, and
markers all have corresponding visual objects which support the annotation drawing needs of most applica-
tions. With some limitations, annotations may be interactively created, moved, and resized. The visual
objects serving as annotations are:

- the circle object
- the date object
- the ellipse object
- the indicator object
- the line object
- the marker object
- the polyline object
- the rectangle object
- the string object
- the stringvalue object
- the timer object

B. Issues Related to Annotations

The issues related to support of annotations by GUI & Visualization services are extensive. First, each anno-
tation must be complete and support full functionality "on its own"; by this, we mean that each class-specific
resource of each annotation is supported and debugged. Secondly, annotations should support placement and
size specification in both device coordinates and world coordinates (although not necessarily both at the same
time). The option of specifying size and location of annotations in either device coordinates or world coordi-
nates provides the flexibility that allows annotations to be used easily by a wide variety of applications.

Another important requirement is that annotations in general must must work correctly in conjunction with the
other visual objects on which they are created; in other words, they must support an integrated world coordi-
nate view. For example, suppose that a marker is created as a child of an image object which uses a pan icon,
and that the marker is placed using world coordinates. If the image object is displaying a large image, and the
pan icon is used to move the portion of the image that appears in the image window, the marker should move
with the image, thus maintaining its integrity with respect to the world coordinate view imposed by its image
parent.

Furthermore, annotations should smoothly support interactive resizing and movement. In keeping with
VisiQuest 2001 GUI & Visualization services philosophy, if the parent of the annotation is put into "edit
mode", the user should be able to easily select, move, and resize the annotation in a way which is intuitive and
easy to use.

7-1

Xvannotate Program Services Volume III - Chapter 7

Another issue involves "sharing" of annotations between visual objects such that more than one visual object
can have knowledge of an annotation. For example, suppose that a circle annotation is created as the child of
an image; suppose further that a zoom object is used in conjunction with the image object. In this case, it
would be desirable for the zoom object to display the circle annotation when its focus was placed over the area
of the image where the circle object was located; in order to do this, it is necessary for the zoom and image
objects to "share" knowledge of the existance of the circle annotation.

The saving and restoring of annotations is also an issue; once created, it would be nice to be able to save anno-
tations along with the data being displayed by the parent on which they were created. Along similar lines, it
has also been requested that GUI & Visualization services support quality PostScript output of annotations
(along with requests of similar support for most or all other visual objects). Reflecting these issues, the
VisiQuest 2 plan for annotations can be summarized briefly in the following list:

1. General infrastructure support needed for implementation of annotations (done)

2. Support for size and location specification in both device and world coordinates (done)

3. Correct operation in conjunction with other visual objects (done) (integrated world coordinate
view)

4. Support for smooth interactive resize and movement by the user (work begun)

5. "Sharing" of annotations between image-subclassed objects

6. Saving and restoring of annotations

7. Quality PostScript output of annotations

Not surprisingly, the plans for VisiQuest 2001 annotations have been more extensive than the time allowed for
implementation. As of this release, the three items in the plan for annotations have been completed. The
infrastructure to support annotations is firmly in place, annotations can be sized and placed in either device or
world coordinates (with a couple exceptions), and annotations maintain an integrated world coordinate view
with other visual objects. In addition, some work has been done to support smooth interactive resize and
movement by the user, although there is still a great deal of work left in this area.

As of this release, annotations cannot be "shared" between image-subclassed objects as mentioned above.
There is no provision for saving or restoring of annotations, and, unfortunately, no support for quality
PostScript output. Hopefully these additional items will be addressed in upcoming VisiQuest 2001 releases.
The table below giv es a summary of the current status of the different annotations provided by the xvannotate
library:

Annotions

Annotation Device Coordinate World Coordinate Interactive Interactive
Size/Position Size/Position Movement Resize

7-2

Xvannotate Program Services Volume III - Chapter 7

Annotions

Annotation Device Coordinate World Coordinate Interactive Interactive
Size/Position Size/Position Movement Resize

Circle Yes Yes Easy Sometimes

Difficult

Date Yes Yes Easy N/A

Ellipse Yes Yes Easy Sometimes

Difficult

Indicator Yes Yes Very Difficult N/A

Line Awkward Yes Difficult to

select;

motion lim-

ited to 90

degrees;

sometimes

unpredictable

behavior may

leave mouse

droppings

Difficult to

select; Some-

times unpre-

dictable

behavior may

leave mouse

droppings

Marker Yes Yes Easy N/A

Polyline No Yes Not sup-

ported yet

Not sup-

ported yet

Rectangle Yes Yes Easy, but

leaves mouse

droppings

Easy, but

leaves mouse

droppings

String Yes Yes Easy N/A

StringValue Yes Yes Easy N/A

Timer Yes Yes Easy N/A

C. The Circle Object

7-3

Xvannotate Program Services Volume III - Chapter 7

Figure 1: The circle object with its internal menuform displayed.

C.1. xvw_create_circle() — create a circle object.

Synopsis
xvobject xvw_create_circle(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically.
name

a name for this particular instance of the circle object (for use in app-defaults files, etc)

Returns
The circle xvobject on success, NULL on failure

Description
A circle visual object supports the display of a circle.

The (x, y) location of the circle center and the radius of the circle may be specified in world coordi-
nates, where the world coordinate range is dictated by the "controlling" visual object. By default, the
parent of the circle object is its controlling visual object; this may be changed using the

7-4

Xvannotate Program Services Volume III - Chapter 7

XVW_GRAPHICS_ATTACH attribute.

Alternatively, the size and location of the circle may be specified using device coordinates. When
device coordinates are used, they are with respect to the bounding box surrounding the circle; specify
the (x,y) location of the upper left hand corner of the bounding box, as well as the width and height of
the bounding box.

C.2. Attributes of the Circle Visual Object

Summary of Circle Attributes

Attribute Description

XVW_CIRCLE_RADIUS This double value specifies the radius of the circle in world coordinates.

XVW_CIRCLE_XCENTER This double value specifies the x location of the center of the circle in

world coordinates.

XVW_CIRCLE_YCENTER This double value specifies the y location of the center of the circle in

world coordinates.

Descriptions of Circle Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_CIRCLE_RADIUS

(N/A)

double 1.0 +/- double

XVW_CIRCLE_XCENTER

(N/A)

double 0.0 +/- double

XVW_CIRCLE_YCENTER

(N/A)

double 0.0 +/- double

C.3. Complete Resource Set of the Circle Visual Object

The inheritance tree of the circle object is as follows:

manager -> graphics -> circle

Accordingly, the complete resource set for the circle object includes:

1. The circle attribute resource set, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

7-5

Xvannotate Program Services Volume III - Chapter 7

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

C.4. Example using the Circle Visual Object

An example program using the circle visual object can be found in $ENVISION/examples/anno-
tate/06.circle. This program is as follows.

#include <envision.h>

/*
* This example creates a window with a single circle annotation in it.
*
* After the manager object parent is put into edit mode (hold down
* shift key and click the left mouse button), the circle can be
* interactively moved by "grabbing" it in the middle with the left mouse
* button; grabbing it near an end will cause the circle to resize.
*
* In this example, the internal menuform for the circle is displayed
* automatically.
*/

void main(
int argc,
char *argv[])

{
xvobject parent;
xvobject circle;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* create black manager backplane, width & height of 300.
*/
parent = xvw_create_manager(NULL, "parent");
xvw_set_attributes(parent,

XVW_WIDTH, 300,
XVW_HEIGHT, 300,
XVW_BACKGROUND_COLOR, "black",
NULL);

/*
* create the circle object. specify dimensions in world coordinates,
*/
circle = xvw_create_circle(parent, "circle");
xvw_set_attributes(circle,

XVW_CIRCLE_XCENTER, 0.5,
XVW_CIRCLE_YCENTER, 0.5,

7-6

Xvannotate Program Services Volume III - Chapter 7

XVW_CIRCLE_RADIUS, 0.1,
XVW_FOREGROUND_COLOR, "orange",
NULL);

/*
* activate menuform so user doesn’t have to bring it up.
*/
xvw_activate_menu(circle);

/* display & run the program */
xvf_run_form();

}

D. The Date Object

Figure 2: The date object with its internal menuform displayed. The date object is used by xpr ism to dis-
play the date when the plot is created.

7-7

Xvannotate Program Services Volume III - Chapter 7

D.1. xvw_create_date() — create a date object.

Synopsis
xvobject xvw_create_date(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the date object (for use in app-defaults files, etc)

Returns
The date object on success, NULL on failure

Description
A date visual object displays the current date according to the internal clock of your computer.

The location of the upper left corner of the the text displaying the date may be specified in world coor-
dinates, where the world coordinate range is dictated by the "controlling" visual object. By default, the
parent of the date object is its controlling visual object; this may be changed using the XVW_GRAPH-
ICS_ATTACH attribute.

Alternatively, the location of the date may be specified using device coordinates. As when world coor-
dinates are used, specify the (x,y) location of the upper left hand corner of the text that will display the
date.

The amount of space used by the text displaying the date cannot be explicitly set by the application;
this is automatically calculated according to the font that is used. Specification of a width and height
simply provides a buffer of space around the text displaying the date; note that justification will have
no effect unless the width and height are specified to be larger than what is actually needed by the text
displaying the date. Width and height may be specified in characters or in pixels.

In addition to font specification, the date object also supports multiple styles in which the string dis-
playing the date can appear: available styles include plain, emphasized, embossed in, and embossed
out.

7-8

Xvannotate Program Services Volume III - Chapter 7

D.2. Attributes of the Date Visual Object

Summary of Date Attributes

Attribute Description

XVW_DATE_FORMAT The format in which the date is displayed. Formatting strings may use

any of the following field descriptors, which are taken directly from the

strftime man page (% man strftime for more information):

%% same as %

%a day of week, using locale’s abbreviated weekday names

%A day of week, using locale’s full weekday names

%b month, using locale’s abbreviated month names

%B month, using locale’s full month names

%c date and time as %x %X

%C date and time, in locale’s long-format representation

%d day of month (01-31)

%D date as %m/%d/%y

%e day of month (1-31; single digits are preceded by a blank)

%H hour (00-23)

%I hour (00-12)

%j day number of year (001-366)

%k hour (0-23; single digits are preceded by a blank)

%l hour (1-12; single digits are preceded by a blank)

%m month number (01-12)

%M minutes (0-59)

%n carriage return

%p locale’s equivalent of AM or PM

%r time as %I:%M:%S %p

%R time as %H:%M

%S seconds (00-59)

%t tab

%T time as %H:%M:%S

%U week number of year (01-52), Sunday is the first day of the week

%w day of week; Sunday is day 0

%W week number of year (01-52), Monday is the first day of the week

%x date, using locale’s date format

%X time, using locale’s time format

%y year within century (00-99)

%Y year, including century (for example, 1988)

%Z time zone abbreviation

The difference between %U and %W lies in which day is counted

as the first day of the week. Week number 01 is the first week with four

or more January days in it.

XVW_DATE_UPDATETIME This integer value specifies how often, in seconds, that the date is

updated. The default is to update the date every second.

7-9

Xvannotate Program Services Volume III - Chapter 7

Descriptions of Date Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_DATE_FORMAT

(dateFormat)

char * %h %d, 19%y %H:%M see description

XVW_DATE_UPDATETIME

(dateUpdatetime)

int 1 values > 0

D.3. Complete Resource Set of the Date Visual Object

The inheritance tree of the date object is as follows:

manager -> graphics -> string -> date

Accordingly, the complete resource set for the date object includes:

1. The date attribute resource set, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

D.4. Example using the Date Visual Object

An example program using the date visual object can be found in $ENVISION/examples/anno-
tate/11.date. This program is as follows.

#include <envision.h>

/*
* This program creates a window with a single date annotation in it.
* The date annotation displays the current time and date.
*
* The date object may be selected and moved by holding down the shift key and
* using the left mouse button; it may be resized by holding down the shift key
* and holding the left mouse button while the mouse is on one of the boxes
* around the bounds of the text.
*
* The internal menuform for the date annotation is popped up explicitly in this
* example, but it may also be brought up by holding down the meta key and using
* the middle mouse button.
*/

void main(int argc,
char *argv[])

{
xvobject date;

7-10

Xvannotate Program Services Volume III - Chapter 7

xvobject manager;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* create a manager backplane, specify character width and height
*/
manager = xvw_create_manager(NULL, "backplane");
xvw_set_attributes(manager,

XVW_CHAR_WIDTH, 50.0,
XVW_CHAR_HEIGHT, 2.0,
NULL);

/*
* create date object specifying placement in world coordinates,

* the format for printing the date, and the update time.
*/
date = xvw_create_date(manager, "date");
xvw_set_attributes(date,

XVW_STRING_XPLACEMENT, 0.5,
XVW_STRING_XPLACEMENT, 0.5,
XVW_DATE_FORMAT, "%h %d, 19%y %H:%M:%S",
XVW_DATE_UPDATETIME, 1,
NULL);

/*
* activate menuform so user doesn’t have to meta-click to bring it up.
*/
xvw_activate_menu(date);

/* display & run the program */
xvf_run_form();

}

E. The Ellipse Object

7-11

Xvannotate Program Services Volume III - Chapter 7

Figure 3: The ellipse annotation.

E.1. xvw_create_ellipse() — create a ellipse object.

Synopsis
xvobject xvw_create_ellipse(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically.
name

a name for this particular instance of the ellipse object (for use in app-defaults files, etc)

Returns
The ellipse xvobject on success, NULL on failure

Description
An ellipse visual object supports the display of an ellipse.

The (x, y) location of the ellipse center, its width and height may be specified in world coordinates,
where the world coordinate range is dictated by the "controlling" visual object. By default, the parent
of the ellipse object is its controlling visual object; this may be changed using the XVW_GRAPH-
ICS_ATTACH attribute.

Alternatively, the size and location of the ellipse may be specified using device coordinates. When
device coordinates are used, they are with respect to the bounding box surrounding the ellipse; specify
the (x,y) location of the upper left hand corner of the bounding box, as well as the width and height of
the bounding box.

E.2. Attributes of the Ellipse Visual Object

Summary of Ellipse Attributes

Attribute Description

XVW_ELLIPSE_HEIGHT This double value specifies the height of the ellipse in world coordi-

nates.

7-12

Xvannotate Program Services Volume III - Chapter 7

Summary of Ellipse Attributes

Attribute Description

XVW_ELLIPSE_WIDTH This double value specifies the width of the ellipse in world coordi-

nates.

XVW_ELLIPSE_XCENTER This double value specifies the x location of the center of the ellipse in

world coordinates.

XVW_ELLIPSE_YCENTER This double value specifies the y location of the center of the ellipse in

world coordinates.

Descriptions of Ellipse Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_ELLIPSE_HEIGHT

(N/A)

double 0.75 +/- double

XVW_ELLIPSE_WIDTH

(N/A)

double 1.0 +/- double

XVW_ELLIPSE_XCENTER

(N/A)

double 0.0 +/- double

XVW_ELLIPSE_YCENTER

(N/A)

double 0.0 +/- double

E.3. Complete Resource Set of the Ellipse Visual Object

The inheritance tree of the ellipse object is as follows:

manager -> graphics -> ellipse

Accordingly, the complete resource set for the ellipse object includes:

1. The ellipse attribute resource set, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

E.4. Example using the Ellipse Visual Object

An example program using the ellipse visual object can be found in $ENVISION/examples/anno-

7-13

Xvannotate Program Services Volume III - Chapter 7

tate/06.ellipse. This program is as follows.

F. The Line Object

Figure 4: The line object with its internal menuform displayed. The line object is used as an annotation
in a variety of applications.

F.1. xvw_create_line() — create a line object.

Synopsis
xvobject xvw_create_line(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the line object (for use in app-defaults files, etc)

Returns
The line object on success, NULL on failure

Description
A line visual object supports the display of a line.

The (x, y) location of the two end points of the line may be specified in world coordinates, where the
world coordinate range is dictated by the "controlling" visual object. By default, the parent of the line
object is its controlling visual object; this may be changed using the XVW_GRAPHICS_ATTACH

7-14

Xvannotate Program Services Volume III - Chapter 7

attribute.

While not recommended, the size and location of the line may be specified using device coordinates.
When device coordinates are used, they are with respect to the bounding box surrounding the line;
specify the (x,y) location of the upper left hand corner of the bounding box, as well as the width and
height of the bounding box. Due to lack of directional information, the line in this case will be drawn
from the upper left hand corner of the bounding box to the lower right of the bounding box.

F.2. Attributes of the Line Visual Object

Summary of Line Attributes

Attribute Description

XVW_LINE_XBEGIN This double value specifies the x location of the beginning of the line

segment in world coordinates.

XVW_LINE_XEND This double value specifies the x location of the end of the line segment

in world coordinates.

XVW_LINE_YBEGIN This double value specifies the y location of the beginning of the line

segment in world coordinates.

XVW_LINE_YEND This double value specifies the y location of the end of the line segment

in world coordinates.

Descriptions of Line Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_LINE_XBEGIN

(N/A)

double 0.0 any double world coordinate value

XVW_LINE_XEND

(N/A)

double 1.0 any double world coordinate value

XVW_LINE_YBEGIN

(N/A)

double 0.0 any double world coordinate value

XVW_LINE_YEND

(N/A)

double 1.0 any double world coordinate value

F.3. Complete Resource Set of the Line Visual Object

The inheritance tree of the line object is as follows:

manager -> graphics -> line

7-15

Xvannotate Program Services Volume III - Chapter 7

Accordingly, the complete resource set for the line object includes:

1. The line attribute resource set, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

F.4. Example using the Line Visual Object

An example program using the line visual object can be found in $ENVISION/examples/anno-
tate/05.line/. This program is as follows.

#include <envision.h>

/*
* This example creates a window with a single line annotation in it.
*
* After the manager object parent is put into edit mode (hold down
* shift key and click the left mouse button), the line can be
* interactively moved by "grabbing" it in the middle with the left mouse
* button; grabbing it near an end will cause the line to resize.
*
* The internal menuform for the line may be displayed by clicking
* the middle mouse button on the line; the menuform may then be
* used to set attributes of the line.
*/

void main(
int argc,
char *argv[])

{
xvobject line;
xvobject image;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* create image object to serve as backplane for line annotation
*/
image = xvw_create_image(NULL, "image");
xvw_set_attribute(image, XVW_IMAGE_IMAGEFILE, "image:kitten");

/*
* create red line object; specify endpoints in world coordinates.

7-16

Xvannotate Program Services Volume III - Chapter 7

*/
line = xvw_create_line(image, "line");
xvw_set_attributes(line,

XVW_LINE_XBEGIN, 45.0,
XVW_LINE_YBEGIN, 145.0,
XVW_LINE_XEND, 100.0,
XVW_LINE_YEND, 155.0,

XVW_FOREGROUND_COLOR, "red",
NULL);

/* display & run the program */
xvf_run_form();

}

G. The Marker Object

Figure 5: Three marker objects; the second has its internal menuform displayed. The marker object has a
variety of uses in application programs.

G.1. xvw_create_marker() — create a marker object

Synopsis
xvobject xvw_create_marker(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the marker object (for use in app-defaults files, etc)

7-17

Xvannotate Program Services Volume III - Chapter 7

Returns
The marker object on success, NULL on failure

Description
A marker visual object supports the display of a marker; A wide variety of marker types are supported.

The (x, y) location of the marker center may be specified in world coordinates, where the world coordi-
nate range is dictated by the "controlling" visual object. By default, the parent of the marker object is
its controlling visual object; this may be changed using the XVW_GRAPHICS_ATTACH attribute.

Alternatively, the location of the marker may be specified using device coordinates. When device coor-
dinates are used, they are with respect to the bounding box surrounding the marker; specify the (x,y)
location of the upper left hand corner of the bounding box, as well as the width and height of the
bounding box.

Because the size of a marker is automatically determined according to the scale, width and height
should not be specified; instead, to increase the size of the marker, provide the desired scale value as
an integer multiple of the original (default) size.

G.2. Attributes of the Marker Visual Object

Summary of Marker Attributes

Attribute Description

XVW_GRAPHICS_MARKERTYPE The marker type.

XVW_MARKER_XPLACEMENT Specifies the x location of the center of the marker in world coordi-

nates.

XVW_MARKER_YPLACEMENT Specifies the y location of the center of the marker in world coordi-

nates.

Descriptions of Marker Attributes

Attribute Type Default Legal
(Resource Name) Values

7-18

Xvannotate Program Services Volume III - Chapter 7

Descriptions of Marker Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_GRAPHICS_MARKERTYPE

(graphicsMarkertype)

int KMARKER_SQUARE KMARKER_NONE

KMARKER_ARC

KMARKER_BOW_TIE

KMARKER_BOX

KMARKER_CARET

KMARKER_CIRCLE

KMARKER_CROSS

KMARKER_DAGGER

KMARKER_DIAMOND

KMARKER_DOT

KMARKER_HEXAGON

KMARKER_POINT

KMARKER_SQUARE

KMARKER_TRIANGLE

KMARKER_X

KMARKER_V

KMARKER_PIXEL

XVW_MARKER_XPLACEMENT

(N/A)

double 0.0 any double world coordinate value

XVW_MARKER_YPLACEMENT

(N/A)

double 0.0 any double world coordinate value

G.3. Complete Resource Set of the Marker Visual Object

The inheritance tree of the marker object is as follows:

manager -> graphics -> marker

Accordingly, the complete resource set for the marker object includes:

1. The marker attribute resource set, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

7-19

Xvannotate Program Services Volume III - Chapter 7

G.4. Example using the Marker Visual Object

An example program using the marker visual object can be found in $ENVISION/examples/anno-
tate/01.marker/. This program is as follows.

#include <envision.h>

/*
* This program demonstrates the use of the marker visual object;
* it creates a manager object containing several markers using
* different foreground colors.
*
* The marker object may be selected and moved by holding down the shift key and
* using the left mouse button. The menuform for the marker annotation may be
* brought up by holding down the meta key and clicking the middle mouse button;
* the menuform may be used to change attributes of the marker such as type,
* scale, color, and world coordinate placement.
*/

void main(int argc,
char *argv[])

{
int i;

xvobject marker;
xvobject parent;

static char *list[] = {"yellow", "orange", "red", "violet",
"purple", "blue", "green", "yellowgreen"};

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets library */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* create a manager object to be the parent of all the markers;

* make the background black
*/

parent = xvw_create_manager(NULL, "parent");
xvw_set_attributes(parent,

XVW_BACKGROUND_COLOR, "black",
XVW_WIDTH, 450,
XVW_HEIGHT, 450,
NULL);

/*
* create one marker for each color in the list;
* set its placement, color, type, and scale
*/
for (i = 0; i < knumber(list); i++)
{

marker = xvw_create_marker(parent, "marker");
xvw_set_attributes(marker,

XVW_MARKER_XPLACEMENT, (i+1) * 0.1,
XVW_MARKER_YPLACEMENT, (i+1) * 0.1,

7-20

Xvannotate Program Services Volume III - Chapter 7

XVW_FOREGROUND_COLOR, list[i],
XVW_GRAPHICS_MARKERTYPE, KMARKER_SQUARE,
XVW_GRAPHICS_MARKERSCALE, 2,
NULL);

}

/* display & run the program */
xvf_run_form();

}

H. The Polyline Object

Figure 6: A polyline object.

H.1. xvw_create_polyline() — create a polyline object.

Synopsis
xvobject xvw_create_polyline(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the polyline object (for use in app-defaults files, etc)

Returns
The polyline object on success, NULL on failure

Description
The polyline visual object supports the display of a polyline.

7-21

Xvannotate Program Services Volume III - Chapter 7

The (x, y) location of each vertex of the polygon must be specified in world coordinates, where the
world coordinate range is dictated by the "controlling" visual object. By default, the parent of the circle
object is its controlling visual object; this may be changed using the XVW_GRAPHICS_ATTACH
attribute.

Device coordinate specification of polyline vertices is not supported, as specification of the bounding
box is not sufficient to determine location of vertices in the polygon.

NOTE: the polyline object is still under construction; interactive movement, resizing, and display of
menuform is not yet available.

H.2. Attributes of the Polyline Object

Summary of Polyline Attributes

Attribute Description

XVW_POLYLINE_NUMPTS This is the number of data points contained in the Coord array specified

by the attribute XVW_POLYLINE_POINTS . Note that you must use this

attribute to specify the number of vertices prior to specifying the ver-

tices with XVW_POLYLINE_POINTS .

XVW_POLYLINE_POINTS This is the array of coordinates defining the vertices of the polyline in

world coordinates. It is an array of type Coord, where the Coord struc-

ture is defined as:

typedef struct

{

Real x, y, z;

Index d;

} Coord;

Note that the XVW_POLYLINE_NUMPTS attribute must be set to the num-

ber of points in the Coord array prior to setting the XVW_POLY-

LINE_POINTS attribute.

The z and d values are both ignored.

Descriptions of Polyline Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_POLYLINE_NUMPTS

(N/A)

int 0 values > 0

7-22

Xvannotate Program Services Volume III - Chapter 7

Descriptions of Polyline Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_POLYLINE_POINTS

(N/A)

Coord * NULL array of Coords of size given by

XVW_POLYLINE_NUMPTS

H.3. Complete Resource Set of the Polyline Object

The inheritance tree of the polyline object is as follows:

manager -> graphics -> polyline

Accordingly, the complete resource set for the polyline object includes:

1. The polyline object attribute, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

I. The Rectangle Object

Figure 7: The rectangle object with its internal menuform displayed.

7-23

Xvannotate Program Services Volume III - Chapter 7

I.1. xvw_create_rectangle() — creates a rectangle object

Synopsis
xvobject xvw_create_rectangle(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the rectangle object (for use in app-defaults files, etc)

Returns
The rectangle object on success, NULL on failure

Description
A rectangle visual object supports the display of a rectangle.

The (x, y) location of the upper left hand corner of the rectangle may be specified in world coordinates,
where the world coordinate range is dictated by the "controlling" visual object. By default, the parent
of the rectangle object is its controlling visual object; this may be changed using the XVW_GRAPH-
ICS_ATTACH attribute.

Alternatively, the size and location of the rectangle may be specified using device coordinates. As
when using world coordinates, specify the (x,y) location of the upper left hand corner of the rectangle,
as well as the width and height of the rectangle.

I.2. Attributes of the Rectangle Object

Summary of Rectangle Attributes

Attribute Description

XVW_RECTANGLE_HEIGHT This is the height of the rectangle in world coordinates.

XVW_RECTANGLE_WIDTH This is the width of the rectangle in world coordinates.

XVW_RECTANGLE_X This is the world coordinate location of the upper left hand

XVW_RECTANGLE_Y This is the world coordinate location of the upper left hand corner of

the rectangle.

7-24

Xvannotate Program Services Volume III - Chapter 7

Descriptions of Rectangle Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_RECTANGLE_HEIGHT

(N/A)

double 0.0 value > 0.0

XVW_RECTANGLE_WIDTH

(N/A)

double 0.0 value > 0.0

XVW_RECTANGLE_X

(N/A)

double 0.0 any double value

XVW_RECTANGLE_Y

(N/A)

double 0.0 any double value

I.3. Complete Resource Set of the Rectangle Object

The inheritance tree of the rectangle object is as follows:

manager -> graphics -> rectangle

Accordingly, the complete resource set for the rectangle object includes:

1. The rectangle attribute resource set, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

I.4. Example Using the Rectangle Visual Object

An example of a programs using the Rectangle object can be found in $ENVISION/examples/anno-
tate/07.rectangle/. This program is as follows.

#include <envision.h>

/*
* This example creates a window with a single rectangle annotation in it.
*
* After the manager object parent is put into edit mode (hold down
* shift key and click the left mouse button), the rectangle can be
* interactively moved by "grabbing" it in the middle with the left mouse
* button; grabbing it near an end will cause the rectangle to resize.
*
* In this example, the internal menuform for the rectangle is displayed
* automatically.
*/

void main(

7-25

Xvannotate Program Services Volume III - Chapter 7

int argc,
char *argv[])

{
xvobject parent;
xvobject rectangle;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* create a black manager backplane, with width & height of 500.
*/
parent = xvw_create_manager(NULL, "parent");
xvw_set_attributes(parent,

XVW_WIDTH, 500,
XVW_HEIGHT, 500,
XVW_BACKGROUND_COLOR, "black",
NULL);

/*
* create rectangle object, specifying dimensions in world
* coordinates, and foreground color of red.
*/
rectangle = xvw_create_rectangle(parent, "rectangle");
xvw_set_attributes(rectangle,

XVW_RECTANGLE_X, 0.5,
XVW_RECTANGLE_Y, 0.5,
XVW_RECTANGLE_WIDTH, 0.15,
XVW_RECTANGLE_HEIGHT, 0.05,
XVW_FOREGROUND_COLOR, "red",
XVW_GRAPHICS_FILLED, "TRUE",
XVW_BACKGROUND_COLOR, "purple",
NULL);

/*
* activate menuform so user doesn’t have to bring it up.
*/
xvw_activate_menu(rectangle);

/* display & run the program */
xvf_run_form();

}

J. The String Object

7-26

Xvannotate Program Services Volume III - Chapter 7

Figure 8: The string object, displaying string "The String Object", with its internal menuform displayed.

J.1. xvw_create_string() — create a string annotation

Synopsis
xvobject xvw_create_string(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the string object (for use in app-defaults files, etc)

Returns
The string object on success, NULL on failure

Description
A string visual object is used to display a (non-editable) string of characters. The string specified may
be of any length, and of multiple lines. Carriage returns may be specified with "\n".

The location of the upper left corner of the the string may be specified in world coordinates, where the
world coordinate range is dictated by the "controlling" visual object. By default, the parent of the
string object is its controlling visual object; this may be changed using the XVW_GRAPH-
ICS_ATTACH attribute.

Alternatively, the location of the string may be specified using device coordinates. As when using
world coordinates, specify the upper left hand corner of the string.

7-27

Xvannotate Program Services Volume III - Chapter 7

The amount of space used by the string cannot be explicitly set by the application; this is automati-
cally calculated according to the font that is used. Specification of a width and height simply provides
a buffer of space around the string; note that justification will have no effect unless the width and
height are specified to be larger than what is actually needed by the string. Width and height may be
specified in characters or in pixels.

In addition to font specification, the string object also supports multiple styles in which the string may
appear: available styles include plain, emphasized, embossed in, and embossed out.

J.2. Attributes of the String Object

Summary of String Attributes

Attribute Description

XVW_STRING_HIGHLIGHT_COLOR When the XVW_STRING_STYLE attribute is used to set the string style to

KSTRING_STYLE_EMPHASIZE , KSTRING_STYLE_EMBOSSED_IN , or

KSTRING_STYLE_EMBOSSED_OUT , this attribute determines the addi-

tional color to be used in the process of drawing the emphasized or

embossed string.

XVW_STRING_HIGHLIGHT_PIXEL The pixel value that defines the desired highlight color.

XVW_STRING_JUSTIFICATION This attribute specifies the justification of the string with respect to the

width and height of the string object. Thus, if the string object has its

string set to "hello", with a width of 5 and a height of 1, the justification

will have little (if any) effect, as the string has no room to "move"

within its boundaries. However, if the width and height are set to

larger than what is necessary to display the string, the justification will

take effect. Justification can be set to any of the following values:

KSTRING_JUSTIFY_CENTER ("Center" on the menuform)

KSTRING_JUSTIFY_TOP ("Top" on the menuform)

KSTRING_JUSTIFY_BOTTOM ("Bottom" on the menuform)

KSTRING_JUSTIFY_LEFT ("Left" on the menuform)

KSTRING_JUSTIFY_RIGHT ("Right" on the menuform)

KSTRING_JUSTIFY_TOPRIGHT ("TopRight" on the menuform)

KSTRING_JUSTIFY_TOPLEFT ("TopLeft" on the menuform)

KSTRING_JUSTIFY_BOTTOMRIGHT ("BottomRight" on the menuform)

KSTRING_JUSTIFY_BOTTOMLEFT ("BottomLeft" on the menuform)

XVW_STRING_STRING This is the string to display in the string object.

7-28

Xvannotate Program Services Volume III - Chapter 7

Summary of String Attributes

Attribute Description

XVW_STRING_STYLE The string visual object supports three styles: plain, emphasized, and

embossed. When this attribute is set to KSTRING_STYLE_PLAIN , the

string is drawn once, in the foreground color. When this attribute is set

to KSTRING_STYLE_EMPHASIZE , the string is emphasized. This means

it is double-drawn using both the foreground and highlight colors; this

causes it to take on a 3D, or "emphasized" effect. When this attribute is

set to KSTRING_STYLE_EMBOSSED_IN , the string will appear

embossed "into" the background; both the foreground and highlight

colors are used in embossing. KSTRING_STYLE_EMBOSSED_OUT also

causes the string to appear embossed, but the string will seem to come

"out of" rather than "into" the background.

XVW_STRING_XPLACEMENT This double value specifies the x location of the lower left hand corner

of the string in world coordinates.

XVW_STRING_YPLACEMENT This double value specifies the y location of the lower left hand corner

of the string in world coordinates.

Descriptions of String Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_STRING_HIGHLIGHT_COLOR

(stringHighlightColor)

char * default bg color any valid color name: see

/usr/lib/X11/rgb.txt or Section 7.1.1 of

The XLib Programming Manual by

Adrian Nye

XVW_STRING_HIGHLIGHT_PIXEL

(N/A)

unsigned

long

default bg pixel

(XtDefaultBack-

ground)

any valid pixel value: see Section 7.3 and

7.4 of The XLib Programming Manual by

Adrian Nye

XVW_STRING_JUSTIFICATION

(stringJustification)

int KSTRING_JUSTIFY_LEFT KSTRING_JUSTIFY_CENTER

KSTRING_JUSTIFY_TOP

KSTRING_JUSTIFY_BOTTOM

KSTRING_JUSTIFY_LEFT

KSTRING_JUSTIFY_RIGHT

KSTRING_JUSTIFY_TOPRIGHT

KSTRING_JUSTIFY_TOPLEFT

KSTRING_JUSTIFY_BOTTOMRIGHT

KSTRING_JUSTIFY_BOTTOMLEFT

XVW_STRING_STRING

(N/A)

char * NULL any printable string

XVW_STRING_STYLE

(stringEmphasize)

int KSTRING_STYLE_PLAIN KSTRING_STYLE_PLAIN

KSTRING_STYLE_EMPHASIZE

KSTRING_STYLE_EMBOSSED_IN

KSTRING_STYLE_EMBOSSED_OUT

XVW_STRING_XPLACEMENT

(N/A)

double 0.0 any double value

7-29

Xvannotate Program Services Volume III - Chapter 7

Descriptions of String Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_STRING_YPLACEMENT

(N/A)

double 0.0 any double value

J.3. Attributes of the String Object

The inheritance tree of the string object is as follows:

manager -> graphics -> string

Accordingly, the complete resource set for the string object includes:

1. The string attribute resource set, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

J.4. Example Using the String Visual Object

An examples of a program using the string object can be found in $ENVISION/examples/anno-
tate/08.string. This program is as follows.

#include <envision.h>

/*
*
* This example creates a window with a single string annotation in it.
*
* After the manager object parent is put into edit mode (hold down
* shift key and click the left mouse button), the string can be
* interactively moved by "grabbing" it in the middle with the left mouse
* button; grabbing it near an end will cause the string to resize.
*
* In this example, the internal menuform for the string is displayed
* automatically.
*/

void main(
int argc,
char *argv[])

{
xvobject parent;
xvobject string;

7-30

Xvannotate Program Services Volume III - Chapter 7

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* create a manager backplane, width & height of 300.
*/
parent = xvw_create_manager(NULL, "parent");
xvw_set_attributes(parent,

XVW_WIDTH, 300,
XVW_HEIGHT, 300,
NULL);

/*
* create the string object, specifying placement in world coordinates.
* an overly large character width & height is given so that

* justification can be tested. specify string to be displayed and
* style to display it in.

*/
string = xvw_create_string(parent, "string");
xvw_set_attributes(string,

XVW_STRING_XPLACEMENT, 0.5,
XVW_STRING_YPLACEMENT, 0.5,

XVW_CHAR_WIDTH, 25.0,
XVW_CHAR_HEIGHT, 10.0,

XVW_STRING_STRING, "Test\n String",
XVW_STRING_JUSTIFICATION, KSTRING_JUSTIFY_CENTER,
XVW_STRING_STYLE, KSTRING_STYLE_EMBOSSED_OUT,
NULL);

/*
* activate the menuform so user doesn’t have to bring it up.
*/
xvw_activate_menu(string);

/* display & run the program */
xvf_run_form();

}

K. The StringValue Object

7-31

Xvannotate Program Services Volume III - Chapter 7

Figure 9: The stringvalue object with its internal menuform displayed. The stringvalue object is used to
display a formatted number as a string.

K.1. xvw_create_stringvalue() — creates a string value object

Synopsis
xvobject xvw_create_stringvalue(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel be created automatically
name

a name for this particular instance of the stringvalue object (for use in app-defaults files, etc)

Returns
The stringvalue object on success, NULL on failure

Description
A stringvalue object supports the display of a formatted number. Thus, standard C formatting strings
such as "%g" or "%.3f" may be used to neatly display a floating point or double precision value.

The location of the upper left corner of the the stringvalue may be specified in world coordinates,
where the world coordinate range is dictated by the "controlling" visual object. By default, the parent
of the stringvalue object is its controlling visual object; this may be changed using the XVW_GRAPH-
ICS_ATTACH attribute.

7-32

Xvannotate Program Services Volume III - Chapter 7

Alternatively, the location of the stringvalue may be specified using device coordinates. As when using
world coordinates, specify the upper left hand corner of the stringvalue.

The amount of space used by the stringvalue cannot be explicitly set by the application; this is auto-
matically calculated according to the font that is used. Specification of a width and height simply pro-
vides a buffer of space around the text; note that justification will have no effect unless the width and
height are specified to be larger than what is actually needed by the text displaying the date. Width and
height may be specified in characters or in pixels.

In addition to font specification, the stringvalue object also supports multiple styles in which the speci-
fied number can appear: available styles include plain, emphasized, embossed in, and embossed out.

K.2. Attributes of the StringValue Object

Summary of StringValue Attributes

Attribute Description

XVW_STRING_FORMAT This is the format in which the string object is to display the numerical

value. Legal values are identical to those used with printf() and scanf(),

except for %s and %c.

XVW_STRING_VALUE This is the numerical value to display.

Descriptions of StringValue Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_STRING_FORMAT

(stringFormat)

char * "%g" see description

XVW_STRING_VALUE

(N/A)

double KMAXFLOAT any double value

K.3. Complete Resource Set of the StringValue Object

The inheritance tree of the stringvalue object is as follows:

manager -> graphics -> string -> stringvalue

Accordingly, the complete resource set for the stringvalue object includes:

1. The string value attribute resource set, given above

7-33

Xvannotate Program Services Volume III - Chapter 7

2. The string attribute resource set, given in the previous section

3. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

4. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

K.4. Example Using the StringValue Visual Object

An example of a program using the stringvalue object can be found in $ENVISION/examples/anno-
tate/09.stringvalue. This program is as follows

#include <envision.h>

/*
*
* This example creates a window with a stringvalue annotation; the stringvalue
* visual object is used to display a floating point number in a particular
* format.
*
* After the manager object parent is put into edit mode (hold down
* shift key and click the left mouse button), the stringvalue object can be
* interactively moved by "grabbing" it in the middle with the left mouse
* button; grabbing it near an end will cause the stringvalue object to resize.
*
* In this example, the internal menuform for the stringvalue object
* is displayed automatically.
*/

void main(
int argc,
char *argv[])

{
xvobject parent;
xvobject stringvalue;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "ENVISION");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* create a manager backplane, width & height of 300
*/
parent = xvw_create_manager(NULL, "parent");
xvw_set_attributes(parent,

XVW_WIDTH, 300,
XVW_HEIGHT, 300,
NULL);

7-34

Xvannotate Program Services Volume III - Chapter 7

/*
* create stringvalue object, specifying placement in world

* coordinates, give justification, and set value to be displayed
*/
stringvalue = xvw_create_stringvalue(parent, "stringvalue");
xvw_set_attributes(stringvalue,

XVW_STRING_VALUE, 10.2,
XVW_STRING_XPLACEMENT, 0.5,
XVW_STRING_YPLACEMENT, 0.5,
XVW_STRING_JUSTIFICATION, KSTRING_JUSTIFY_CENTER,
NULL);

/*
* activate the menuform so user doesn’t * have to bring it up.
*/
xvw_activate_menu(stringvalue);

/* display & run the program */
xvf_run_form();

}

L. The Timer Object

Figure 10: The timer object acts like a stopwatch, starting at the time specified and using the system
clock to update as often as specified.

L.1. xvw_create_timer() — create a timer object.

Synopsis
xvobject xvw_create_timer(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

a name for this particular instance of the timer object (for use in app-defaults files, etc)

Returns
The timer object on success, NULL on failure

7-35

Xvannotate Program Services Volume III - Chapter 7

Description
The timer object was designed for use as a stopwatch. It displays the current time (including seconds)
according to the system clock of the computer. It can be started and stopped as desired, and the update
time can be specified to fractions of a second.

The location of the upper left corner of the timer may be specified in world coordinates, where the
world coordinate range is dictated by the "controlling" visual object. By default, the parent of the timer
object is its controlling visual object; this may be changed using the XVW_GRAPHICS_ATTACH
attribute.

Alternatively, the location of the timer may be specified using device coordinates. As when using
world coordinates, specify the upper left hand corner of the timer.

The amount of space used by the text displaying the time cannot be explicitly set by the application;
this is automatically calculated according to the font that is used. Specification of a width and height
simply provides a buffer of space around the time; note that justification will have no effect unless the
width and height are specified to be larger than what is actually needed by the text displaying the time.
Width and height may be specified in characters or in pixels.

In addition to font specification, the timer object also supports multiple styles in which the string dis-
playing the time can appear: available styles include plain, emphasized, embossed in, and embossed
out.

L.2. Attributes of the Timer Object

Summary of Timer Attributes

Attribute Description

XVW_TIMER_COUNTER This attribute specifies the time (in seconds) at which the timer is

started. Usually, this value is left at the default, 0.0, as (like a stop-

watch) the timer is considered to be "turned on" at time = 0.0. How-

ev er, there may are occasions when the "turn on" time is at some time

later than 0.

XVW_TIMER_UPDATETIME This attribute indicates how often the timer is updated, given in frac-

tions of a second. If, for example, XVW_TIMER_UPDATETIME is set to

0.25, this indicates that the timer will update every 0.25 seconds, or 4

times a second. Note that the timer can only be as accurate as your

computer system clock.

7-36

Xvannotate Program Services Volume III - Chapter 7

Descriptions of Timer Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_TIMER_COUNTER

(N/A)

double 0.0 values >= 0.0

XVW_TIMER_UPDATETIME

(timerUpdatetime)

double 0.1 values > 0.0

L.3. Attributes of the Timer Object

The inheritance tree of the timer object is as follows:

manager -> graphics -> string -> stringvalue -> timer

Accordingly, the complete resource set for the timer object includes:

1. The timer object attribute, given above

2. The graphics attribute resource set, given in Chapter 5, "The Graphics Attributes"

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

7-37

Xvannotate Program Services Volume III - Chapter 7

This page left intentionally blank

7-38

Table of Contents

A. Overview of Visual Objects Related To Annotation 7-1
B. Issues Related to Annotations . 7-1
C. The Circle Object . 7-3

C.1. xvw_create_circle() — create a circle object. 7-4
C.2. Attributes of the Circle Visual Object 7-5
C.3. Complete Resource Set of the Circle Visual Object 7-5
C.4. Example using the Circle Visual Object 7-6

D. The Date Object . 7-7
D.1. xvw_create_date() — create a date object. 7-8
D.2. Attributes of the Date Visual Object 7-9
D.3. Complete Resource Set of the Date Visual Object 7-10
D.4. Example using the Date Visual Object 7-10

E. The Ellipse Object . 7-11
E.1. xvw_create_ellipse() — create a ellipse object. 7-12
E.2. Attributes of the Ellipse Visual Object 7-12
E.3. Complete Resource Set of the Ellipse Visual Object 7-13
E.4. Example using the Ellipse Visual Object 7-13

F. The Line Object . 7-14
F.1. xvw_create_line() — create a line object. 7-14
F.2. Attributes of the Line Visual Object 7-15
F.3. Complete Resource Set of the Line Visual Object 7-15
F.4. Example using the Line Visual Object 7-16

G. The Marker Object . 7-17
G.1. xvw_create_marker() — create a marker object 7-17
G.2. Attributes of the Marker Visual Object 7-18
G.3. Complete Resource Set of the Marker Visual Object 7-19
G.4. Example using the Marker Visual Object 7-20

H. The Polyline Object . 7-21
H.1. xvw_create_polyline() — create a polyline object. 7-21
H.2. Attributes of the Polyline Object . 7-22
H.3. Complete Resource Set of the Polyline Object 7-23

I. The Rectangle Object . 7-23
I.1. xvw_create_rectangle() — creates a rectangle object 7-24
I.2. Attributes of the Rectangle Object . 7-24
I.3. Complete Resource Set of the Rectangle Object 7-25
I.4. Example Using the Rectangle Visual Object 7-25

J. The String Object . 7-26
J.1. xvw_create_string() — create a string annotation 7-27
J.2. Attributes of the String Object . 7-28
J.3. Attributes of the String Object . 7-30
J.4. Example Using the String Visual Object 7-30

K. The StringValue Object . 7-31
K.1. xvw_create_stringvalue() — creates a string value object 7-32
K.2. Attributes of the StringValue Object 7-33
K.3. Complete Resource Set of the StringValue Object 7-33
K.4. Example Using the StringValue Visual Object 7-34

L. The Timer Object . 7-35

- i -

Xvannotate Program Services Volume III - Chapter 7

L.1. xvw_create_timer() — create a timer object. 7-35
L.2. Attributes of the Timer Object . 7-36
L.3. Attributes of the Timer Object . 7-37

- ii -

Program Services Volume III

Chapter 8

Xvforms

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 8 - Xvforms

A. Introduction

Most VisiQuest 2001 software objects 1 have a Graphical User Interface, or GUI which is defined by a User
Interface Specification File, or UIS file. The GUI of a software object may be displayed for a variety of rea-
sons:

1. The user may be in the process of modifying or examining the GUI, with the use of the guise
GUI specification editor, or with the preview GUI display tool.

2. The user may be using the VisiQuest visual language to access the software object, and has dis-
played the GUI for the program by clicking on the "menu" icon in the middle of the glyph which
represents the program.

3. The user has used the xvr un tool to display the GUI of the software object, and will execute the
process via the GUI.

4. The user has used the built-in [-gui] option of the program to display its GUI, and is using the
GUI of the program as an alternative to providing program arguments on the command line.

5. If the software object is an xvroutine, by its nature it must display its GUI when it is executed
from the command line.

6. If the software object is a library which implements GUI or visual objects (such as the xvisual
library), the user can put a displayed object in edit mode, and bring up its internal menuform GUI
that offers the user control over its attributes.

The xvforms library creates, displays, and maintains the GUI of a VisiQuest 2001 software object.

A.1. Available GUI Items

Assuming some prior experience with the VisiQuest 2001 system, most of the items that comprise a VisiQuest
2001 GUI are probably already familiar; however, this section provides a review of the GUI items supported
by the xvforms library.

1 including kroutines, xvroutines, pane objects, script objects, and those library objects which use
internal menuforms

8-1

Xvforms Program Services Volume III - Chapter 8

A.1.1. The Form

Item Description
Any VisiQuest GUI, as a whole, is referred to as a "form".

Use by the GUI
The form is the GUI.

Use by the CLUI
A form is not applicable to a CLUI.

A.1.2. The Subform

Item Description
Every GUI has at least one subform. For simple user interfaces, a single subform is all that is
necessary. The subform provides a backplane for one or more panes. If the subform has more
than one pane, it will also have a guide pane with which to change the pane that is currently dis-
played.

Use by the GUI
The subform serves as a backplane and may contain one or more panes.

Use by the CLUI
A subform is not relevant to the CLUI.

A.1.3. The Pane

Item Description
Every GUI has at least one pane. For very simple GUI’s, a single pane on a single subform is all
that is necessary. For more complex GUI’s, a subform may contain many panes; the user
switches between panes by clicking on their associated guide buttons.

Use by the GUI
The pane provides a backplane for GUI selections.

8-2

Xvforms Program Services Volume III - Chapter 8

Use by the CLUI
The pane is not used by the CLUI directly.

A.1.4. The Master Form

Item Description
When more than one subform is needed on the GUI, a master form is necessary. A master form
always contains one or more subform buttons which allow the user to control which subform is
currently displayed; while the currently displayed subforms be mapped and unmapped, the master
form remains displayed throughout the run of the program. A master form may also include
action buttons and selections, but these should be limited to only those which would otherwise be
repeated on each of the subforms in the GUI.

Use by the GUI
The master form provides a backplane for subform buttons and selections.

Use by the CLUI
The master form is not applicable to the CLUI.

A.1.5. The Guide Pane

Item Description
When more than one pane is needed on a subform, a guidepane is necessary. A guidepane always
contains two or more guide buttons which allow the user to control which pane is currently dis-
played on the subform. A guidepane may also include subform action buttons and selections, but
these should be limited to only those which would otherwise be repeated on each of the panes of
the subform.

Use by the GUI
The guidepane provides a backplane for guide buttons and selections.

Use by the CLUI
The guidepane is not relevant to the CLUI.

8-3

Xvforms Program Services Volume III - Chapter 8

A.1.6. Subform Buttons

Figure 1: A subform button is used on a master form to map the subform with which it is associated.

Figure 2: Subform buttons and guide buttons are frequently gathered into a pulldown menu.

Item Description
When multiple subforms are used, it is necessary to have a mechanism on the master form with
which to change the subform that is currently displayed (if subforms are mutually exclusive) or to
bring up new subforms (is subforms are not mutually exclusive). The subform button, situated on
the master form, provides this mechanism. Each subform has its own subform button; when the
user clicks on the subform button, that subform is displayed. Each subform button is associated
with its subform with the use of the variable, which must be identical for the subform button and
the subform with which it is associated. Subform buttons are used exclusively in the *.form files
for xvroutines.

Use by the GUI
The user clicks on a subform button in order to map the subform with which it is associated.
Mapping of the subform is done automatically.

Use by the CLUI
The line in the UIS file representing the subform button is ignored by the CLUI.

8-4

Xvforms Program Services Volume III - Chapter 8

A.1.7. Guide Buttons

Figure 3: A guide button lets the user control which pane in a multi-pane subform is currently mapped.
In this excerpt from a sample GUI, the three guide buttons in the guidepane to the left are used to switch
among the three panes on the right. Currently, the guide button "Pane2" is used to display the second
pane, named "Pane 2".

Item Description
When a subform contains more than one pane, it is necessary to have a mechanism with which to
change the pane that is currently displayed. The guide button, situated on the guide pane, pro-
vides this mechanism. Each pane has its own guide button; when the user clicks on the guide
button, that pane is displayed. Only one pane may be displayed in a subform at any giv en time.
Each guide button is associated with its pane with the use of the variable, which must be identical
for the guide button and the pane with which it is associated. Guide buttons are used exclusively
in the *.form file for xvroutines.

Use by the GUI
The user clicks on a guide button in order to map the pane with which it is associated. Mapping
of the pane is done automatically. Only one pane may be mapped at any one time.

Use by the CLUI
The line in the UIS file representing the guide button is ignored by the CLUI.

A.1.8. Action Buttons

Figure 4: A pane action lets the user request a particular action; in this case, the action will be to "edit".

Item Description
The purpose of an action button is to return software control to the application program; it is used
exclusively in the *.form file by xvroutines. In general, when a pane contains two or more non-

8-5

Xvforms Program Services Volume III - Chapter 8

live selections, an action button should be placed at the bottom of the pane so that the user can tell
the application, "I’ve finished setting values of selections now, go ahead and perform (some
action)." Alternatively, an application may be able to perform a particular operation without any
additional information provided by the user besides the fact that the user now wants the operation
performed; this is the other case in which an action button is appropriate. A mouse click on the
action button causes software control to be diverted from the graphical user interface to the appli-
cation’s subroutine that is associated with the action button, where the name of the subroutine in
question is determined by the variable associated with the action button, as well as the variable
associated with the pane, guide pane, or master form on which the action button appears.

Use by the GUI
The user clicks on an action button to request a particular action from the application. Control is
immediately returned from the GUI to the application so that the action may be performed.

Use by the CLUI
The line in the UIS file representing the action button is ignored by the CLUI.

A.1.9. Help Buttons

Figure 5: Every master form, subform, and pane should have one help button that allows the user to
access an online help page that covers that part of the GUI.

Item Description
The help button is a standard device on the GUI; all programs in the VisiQuest system are
required to provide online help that can be accessed directly via the user interface. The help but-
ton provides access to a help file involving no additional work by the application program; all that
is needed is the correct path to the help file. VisiQuest standards specify that help buttons always
provide help pages specific to their location. Thus, on a GUI with all three levels of hierarchy, the
help button located on the master form will give information about the program as a whole, the
help button located on a subform will give information about the general options offered by that
subform, and the help button located on a pane will give detailed information about the I/O
located on that pane. One help button should be used for each pane, each subform, and the master
form (if any) in the *.form file for xvroutines. Every *.pane file should include one help button to
access the man page for the program.

Use by the GUI
The help button provides access to online help from the GUI.

Use by the CLUI
The UIS line representing the help button is ignored by the CLUI.

8-6

Xvforms Program Services Volume III - Chapter 8

A.1.10. Quit Buttons

Figure 6: A quit button allows the user to quit the program. Quit buttons are also used to close panes and
subforms.

Item Description
The quit button allows the program to exit. In addition, when a GUI has a master form with sev-
eral subforms, quit buttons on the subforms allow the user to unmap them and thus reduce clutter
on the screen. When used to exit the program, the quit button is by convention labeled "Exit;"
when used to close a subform, the quit button is by convention labeled "Close."

Use by the GUI
Allows the user to close a subform or exit the program.

Use by the CLUI
The UIS line specifying the Quit button is ignored by the CLUI.

A.1.11. InputFile Selections

Figure 7: An Input File selection; the title is on a button that brings up the VisiQuest file/aliases browser.

Item Description
This allows the user to specify an input file; the file will be checked for existence and read per-
mission. An input file may be part of a toggle, or a member of a mutually inclusive or mutually
exclusive group. It may be optional or required. It may be used in the *.form file for an xvrou-
tine, or in the *.pane file for any VisiQuest program.

Use by the GUI
When used by the GUI, the input file selection allows the user to enter an input file directly or to
use the file browser to select a file. The input file selection consists of an optional box (if the
selection is optional), a title, and a text box in which the user may enter a filename. The title of
the input file selection is actually a button that can be used to bring up the file browser.

8-7

Xvforms Program Services Volume III - Chapter 8

Use by the CLUI
When used by the CLUI, the input file specifies an input file argument, as in "-i1
my_input_image.viff". If an invalid input file argument is entered, the user will be re-prompted.
When an optional input file argument is absent from the command line, it takes on the default
value specified (the default value may be NULL).

A.1.12. OutputFile Selections

Figure 8: The title of an Output File selection is a button that brings up the VisiQuest file/aliases browser.

Item Description
The OutputFile allows the user to specify an output file that will be checked for write permission.
OutputFile lines may be part of a toggle, or members of a mutually inclusive or mutually exclu-
sive group. They may be optional or required. It may be used in the *.form file for an xvroutine,
or in the *.pane file for any VisiQuest program.

Use by the GUI
When used by the GUI, the output file selection allows the user to enter an output file directly or
to use the file browser to select an existing output file. The output file selection consists of an
optional box (if the selection is optional), a title, and a text box in which the user may enter a file-
name. The title of the output file selection is actually a button that can be used to bring up the file
browser.

Use by the CLUI
When used by the CLUI, the output file specifies an output file argument, as in "-o1 my_out-
put_file". The user will be re-prompted for invalid output file arguments. When an optional out-
put file argument is absent from the command line, it takes on the default value specified (the
default value may be NULL).

A.1.13. Integer Selections

Figure 9: An required Integer selection using a scrollbar.

8-8

Xvforms Program Services Volume III - Chapter 8

Item Description
Integers may be part of a toggle, or members of a mutually inclusive or mutually exclusive group.
They may be optional or required. Bounded or unbounded values may be specified. It may be
used in the *.form file for an xvroutine, or in the *.pane file for any VisiQuest program.

Use by the GUI
When used by the GUI, the integer selection consists of an optional box (if the integer is optional)
a title, and a text box in which the integer may be entered. Bounded integers may use an optional
scroll bar. Liv e integers will have the stylized carriage return symbol appended to the right side.

Use by the CLUI
When used by the CLUI, the integer specifies an integer argument, as in "-int_variable 21". Val-
ues entered for bounded integer arguments will be checked to be sure they are within bounds; the
user will be re-prompted for invalid entries. When an optional integer argument is absent from
the command line, it takes on the default value specified.

A.1.14. Float Selections

Figure 10: An optional Float selection using a scrollbar.

Item Description
A float is used when a floating point number is needed. A float may be part of a toggle, or a
member of a mutually inclusive or mutually exclusive group. It may be optional or required.
Bounded or unbounded values may be specified. It may be used in the *.form file for an xvrou-
tine, or in the *.pane file for any VisiQuest program.

Use by the GUI
When used by the GUI, the float specifies a float selection. The float selection consists of an
optional box (if the float is optional), a title, and a text box in which the float may be entered. A
bounded float may use an optional scroll bar. A live float will have the stylized carriage return
symbol appended to the right side.

Use by the CLUI
When used by the CLUI, the float specifies a float argument, as in "-float_variable 0.123". Values
entered for bounded float arguments will be checked to be sure they are within bounds; the user
will be re-prompted for invalid and bogus entries. When an optional float argument is absent
from the command line, it takes on the default value specified.

8-9

Xvforms Program Services Volume III - Chapter 8

A.1.15. Double Selections

Figure 11: An optional Double selection.

Item Description
A double is used when double precision accuracy is needed. It may be part of a toggle, or a mem-
ber of a mutually inclusive or mutually exclusive group. It may be optional or required. Bounded
or unbounded values may be specified. It may be used in the *.form file for an xvroutine, or in the
*.pane file for any VisiQuest program.

Use by the GUI
When used by the GUI, the double specifies a double selection. The double selection consists of
an optional box (if the double is optional), a title, and a text box in which the double may be
entered. A bounded double may use an optional scroll bar. A live double will have the stylized
carriage return symbol appended to the right side.

Use by the CLUI
When used by the CLUI, the double specifies a double argument, as in "-dbl_variable
0.987654321". Values entered for a bounded double argument will be checked to be sure they are
within bounds; the user will be re-prompted for out-of-bounds and bogus entries. When an
optional double selection is absent from the command line, it takes on the default value specified.

A.1.16. String Selections

Figure 12: A string selection that will be used to enter a title.

Item Description
Strings may be part of a toggle, or members of a mutually inclusive or mutually exclusive group.
They may be optional or required. It may be used in the *.form file for an xvroutine, or in the
*.pane file for any VisiQuest program.

Use by the GUI
When used by the GUI, the string selection consists of an optional box (if the string is optional), a

8-10

Xvforms Program Services Volume III - Chapter 8

title, and a text box in which the string may be entered. Live strings will have the stylized car-
riage return symbol appended to the right side.

Use by the CLUI
When used by the CLUI, the String specifies a string argument, as in "-string_variable ’my spe-
cial string’". When an optional string selection is absent from the command line, it takes on the
default value specified (the default value may be NULL). Any printable string is considered to be
valid input.

A.1.17. Flag Selections

Figure 13: A flag selection allows the user to indicate whether or not to use a particular option, in this
case, "Invert".

Item Description
A flag allows the input of an implied boolean value. A flag may be part of a toggle, or a member
of a mutually inclusive or mutually exclusive group. It may be used in the *.form file for an
xvroutine, or in the *.pane file for any VisiQuest program.

Use by the GUI
When used by the GUI, the flag specifies a flag selection. The flag selection consists of an
optional box and a title. When the optional box is highlighted, the value of the flag is considered
to be TRUE (1). When the optional box is un-highlighted, the value of the flag is considered to be
FALSE (0). A liv e flag selection has the stylized carriage return symbol appended to the right
side.

Use by the CLUI
When used by the CLUI, the flag specifies a flag argument. If the flag is provided on the com-
mand line, as in "-flag_variable," the argument is considered to be TRUE (1). If the flag is absent
from the command line, the argument is considered to be FALSE (0).

8-11

Xvforms Program Services Volume III - Chapter 8

A.1.18. Logical Selections

Figure 14: A logical selection that lets the user specify whether or not a software object should be
installed in Cantata.

Item Description
A logical allows the input of an explicit boolean value. Logicals may be part of a toggle, or mem-
bers of a mutually inclusive or mutually exclusive group. It may be used in the *.form file for an
xvroutine, or in the *.pane file for any VisiQuest program.

Use by the GUI
When used by the GUI, the logical selection consists of an optional box (if the selection is
optional), a title, and a button which may be switched back and forth between the two possible
values. Live logical selections have the stylized carriage return symbol appended to the right side.

Use by the CLUI
When used by the CLUI, the Logical specifies a logical argument. The logical value is provided
on the command line explicitly, as in "-logical 0" for a value of FALSE, or "-logical 1" for a value
of TRUE. When an optional logical argument is absent from the command line, it takes on the
default value specified. The user will be re-prompted for invalid entries.

A.1.19. Cycle Selections

Figure 15: A Cycle selection allowing the user to set the colorspace model, with three settings, "RGB",
"CMY" and "HLS"; the current value is "RGB".

Item Description
A cycle allows the input of one of a number of predefined choices. Each choice is represented by
both a number and a label, where the numbers are incremental integers beginning with an integer
that you can specify. For example, you might have a cycle that moved through the sequence, "2
(dot), 3 (dash), 4 (dot-dash)". A Cycle may NOT be part of a toggle, but it may be a member of a
mutually inclusive or mutually exclusive group. It may be optional or required. It may be used in
the *.form file for an xvroutine, or in the *.pane file for any VisiQuest program.

8-12

Xvforms Program Services Volume III - Chapter 8

Use by the GUI
When used by the GUI, the Cycle specifies a cycle selection. The cycle selection consists of an
optional box (if the selection is optional), a title, and a button which may be cycled through the
set of possible values. Live cycle selections have the stylized carriage return symbol appended to
the right side. Because of their presentation, cycles are only recommended in situations where
there are a small number (3 - 6) choices.

Use by the CLUI
When used by the CLUI, the Cycle specifies a cycle argument. The cycle value is provided on the
command line explicitly, where either the integer or the label of a choice may be specified. In the
above example, if the user wanted "dot", they might specify either "-cycle_variable 2" or
"-cycle_variable dot". When an optional cycle argument is absent from the command line, it
takes on the default value specified. The user will be re-prompted for invalid entries. Both the
integer value and the label of the cycle value specified will be made available to the program.

A.1.20. List Selections

Figure 16: A list selection is used to select from three choices. A list selection differs from a displayed
list selection in that it has a button with which to access the pulldown menu, rather than displaying the list
all the time.

Item Description
A list allows the input of one of a number of predefined choices. Each choice is represented by
both a number and a label, where the numbers are incremental integers beginning with an integer
that may be specified. For example, you might have a list that offered the choices, "red (1),
orange (2), yellow (3), green (4), blue(5) indigo (6)". Lists may be NOT be part of a toggle, but
they may be members of a mutually inclusive or mutually exclusive group. They may be optional
or required. It may be used in the *.form file for an xvroutine, or in the *.pane file for any
VisiQuest program.

Use by the GUI
When used by the GUI, the list selection consists of an optional box (if the selection is optional),
a title, and a button which displays a pulldown menu containing the possible values of the list.
Live list selections have the stylized carriage return symbol appended to the right side. Because
of their presentation, lists are recommended in situations where there are a large number (more
than 5) choices. The list selection differs from the displayed list selection in that the list selection

8-13

Xvforms Program Services Volume III - Chapter 8

features a pulldown menu that is accessable via a button, while the displayed list selection fea-
tures a list the contents of which are always displayed.

Use by the CLUI
When used by the CLUI, the list specifies a list argument. The list value is provided on the com-
mand line explicitly, where either the integer or the label of a choice may be specified. In the
above example, if the user wanted "red", they might specify either "-list_variable 1" or "-list_vari-
able red". When an optional list argument is absent from the command line, it takes on the
default value specified. The user will be re-prompted for invalid entries. Both the integer value
and the label of the list value specified will be made available to the program.

A.1.21. DisplayList Selections

Figure 17: A displayed list selection has its list displayed all the time, in contrast to a list selection, which
has a button with which to access the pulldown menu.

Item Description
A list allows the input of one of a number of predefined choices. Each choice is represented by
both a number and a label, where the numbers are incremental integers beginning with an integer
that you can specify. For example, you might have a list that offered the choices, "red (1), orange
(2), yellow (3), green (4), blue(5) indigo (6)". Lists may be NOT be part of a toggle, but they may
be members of a mutually inclusive or mutually exclusive group. They may be optional or
required. It may be used in the *.form file for an xvroutine, or in the *.pane file for any VisiQuest
program.

Use by the GUI
When used by the GUI, the displayed list selection consists of an optional box (if the selection is
optional), a title, and a list of items from which the user may select. The list may have a scrollbar
depending on the geometry of the selection. Live displayed list selections have the stylized car-
riage return symbol appended to the right of the label. Because of their presentation, displayed
lists are recommended in situations where there is a large number (more than 5) choices.
Depending on context, the actual size of the displayed list selection might be limited and the
scrollbar used rather than allowing the displayed list to grow large enough to display all entries.
The displayed list selection features a list the contents of which are always displayed, while the
list selection features a pulldown menu which is accessable via a button.

8-14

Xvforms Program Services Volume III - Chapter 8

Use by the CLUI
When used by the CLUI, the displayed list specifies a list argument. The list value is provided on
the command line explicitly, where either the integer or the label of a choice may be specified. In
the above example, if the user wanted "red", they might specify either "-list_variable 1" or
"-list_variable red". When an optional list argument is absent from the command line, it takes on
the default value specified. The user will be re-prompted for invalid entries. Both the integer
value and the label of the list value specified will be made available to the program.

A.1.22. StringList Selections

Figure 18: A stringlist selection offering the user one of a set of predefined colors, or the option to enter
their own string.

Item Description
A stringlist allows the selection of predefined strings, or typing of a new string if the desired
string is not in the predefined list. For example, you might have a "color" parameter where you
know that the basic ROYGBIV colors are used most often, but you don’t want to rule out the
option of a less frequently used color. Stringlists may be NOT be part of a toggle, but they may
be members of a mutually inclusive or mutually exclusive group. They may be optional or
required. StringLists are used in the *.form file for xvroutines, and in the *.pane file for any
VisiQuest program.

Use by the GUI
When used by the GUI, the stringlist selection consists of an optional box (if the selection is
optional), a title, and a text box in which a string may be entered. The title is a button that will
display a pulldown menu with the predefined values of the list. Live stringlist selections have the
stylized carriage return symbol on the right side.

Use by the CLUI
When used by the CLUI, the StringList specifies a stringlist argument. The stringlist argument is
treated identically to the string argument; the benefit of using a stringlist only applies to GUIs.

8-15

Xvforms Program Services Volume III - Chapter 8

A.1.23. Blank Selections (Labels)

Figure 19: A blank selection is used to display text on the GUI.

Item Description
The Blank (label) provides a non-operational label widget on the GUI which may be used for gen-
eral information and text display purposes. It may be used in the *.form file for an xvroutine, or
in the *.pane file for any VisiQuest program.

Use by the GUI
The blank selection is used to display a label on the GUI

Use by the CLUI
The line in the UIS file representing the blank selection is ignored by the CLUI.

A.1.24. Routine Buttons

Figure 20: The routine button is used in *.pane files as part of the cantata GUI for a VisiQuest program.
Commonly labelled, "Run", or "Execute", the routine button executes the program in question, using the
values of the other selections on the pane to determine the arguments to pass the program.

Item Description
The Routine Button is used in the *.pane UIS file for all VisiQuest programs so that they may be
integrated into the VisiQuest visual language. Routine buttons are used exclusively in the *.pane
files of VisiQuest programs.

Use by the GUI
When the user clicks on this button, the specified program is immediately executed with the argu-
ments specified by the values of all other selections on the pane.

Use by the CLUI
The line in the UIS file representing the routine button is ignored by the CLUI.

8-16

Xvforms Program Services Volume III - Chapter 8

A.1.25. Stdin And Stdout Selections

Figure 21: A stdin selection is used only on pane objects that are being used to integrate non-VisiQuest pro-
grams (that are dependent on stdin for input) into the VisiQuest system.

Figure 22: A stdout selection is used only on pane objects that are being used to integrate non-VisiQuest
programs (that are dependant on stdout for output) into the VisiQuest system.

Item Description
VisiQuest can be used as an integration system. This is appropriate when there exists a number of
non-VisiQuest programs upon which one wishes to enforce standardized documentation, a consis-
tent user interface, and accessability from the VisiQuest visual language, VisiQuest. The proce-
dure that is followed when one is doing such an integration is to create a pane object for each pro-
gram that is to be integrated; a pane object provides a VisiQuest GUI for each non-VisiQuest pro-
gram. The stdin and stdout selections provide a mechanism whereby non-VisiQuest programs
depending on stdin and stdout may be integrated into VisiQuest.

It is important to understand that programs written under the VisiQuest development system do
not depend on stdin or stdout; instead, they hav e a formalized command line user interface where
input and output files are specified using input file and output file arguments, as in "-i image:ball"
or "-o my_image.viff".

However, if the programs to be integrated into VisiQuest depend on stdin and stdout for input and
output, then some mechanism must be provided from within VisiQuest to accommodate them.
The stdin and stdout selections were created for this reason.

Use by the GUI
The stdin and stdout selections are only used in the *.pane files for pane objects that are created in
order to integrate non-VisiQuest, stdin- and stdout-dependent programs into VisiQuest.

Use by the CLUI
The lines in the UIS file representing stdin and stdout are ignored by the CLUI.

8-17

Xvforms Program Services Volume III - Chapter 8

A.1.26. Submenus

Figure 23: A submenu is created from button selections and blank selections.

Item Description
When many items are accessable from a particular master form, guidepane, or pane of the GUI,
one can reduce clutter by grouping buttons and labels together onto a pulldown menu. Any group
of selections that are made up of a single button or label may be collected into a submenu; thus,
candidates for menu contents include: subform buttons (for submenus on master forms only) and
guide buttons (for submenus on guide panes only) as well as action buttons, quit buttons, help but-
tons, and blank selections on any part of the GUI. It is most often used in the *.form file for an
xvroutine. It may also be used in the *.pane file for any VisiQuest program, although by conven-
tion it is used sparingly in this context.

Use by the GUI
The submenu button presents a single button on the GUI; clicking on the button will display a
pulldown menu from which any of the other buttons may be selected. Other buttons that are
grouped into a submenu will retain their original function.

Use by the CLUI
The line in the UIS file representing the submenu is ignored by the CLUI.

8-18

Xvforms Program Services Volume III - Chapter 8

A.1.27. Workspaces

Figure 24: A workspace selection provides a general-purpose area on the GUI for whatever purpose may
be appropriate for the application. Here, a workspace selection is used by editimage to hold the displayed
image.

Item Description
The Workspace provides a general purpose manager widget on the GUI which may be used as a
backplane for display of images, graphics, or special-purpose GUI elements that are not provided
directly. The workspace is used exclusively in the *.form files of xvroutines.

Use by the GUI
The application may use the workspace for whatever purpose may be applicable. It has abso-
lutely no functionality on its own; the application is provided with the address of the requested
widget, and is then responsible for the use and maintenance of this widget. Once the workspace
widget is displayed, the GUI does not manage or interfere with it further.

Use by the CLUI
The line in the UIS file representing the workspace is ignored by the CLUI.

B. About Public xvforms Library Calls

As mentioned earlier, the xvforms library creates, displays, and maintains the GUI of a VisiQuest 2001 soft-
ware object. Kroutines, pane objects, and script objects are limited in that they may only have their GUI’s dis-
played by another program, that program being an xvroutine such as preview, guise, VisiQuest, or xvr un.
Only xvroutines can make direct calls to the xvforms library to create, display, or modify their GUI’s.

8-19

Xvforms Program Services Volume III - Chapter 8

Routines available in the xvforms library include routines to create a graphical user interface, run a graphical
user interface, and change a graphical user interface during application execution.

Calls to some of the xvforms routines must be made in the main driver of every xvroutine. The required calls
to these routines are generated automatically.

The xvforms library also includes other routines for modifying, maintaining, and changing the operation of the
GUI of an xvroutine; calls to these routines may be added as desired. Of special interest is xvf_set_attribute(),
which allows you to change the GUI of your xvroutine during execution.

The internal data structure used by the xvforms library to represent a GUI is referred to as a form tree. The
data type of a form tree is the kform. The xvf_create_form() routine allocates and returns a kform pointer,
while many of the other routines will take that same kform pointer as their first parameter. It is not necessary
to understand the details of the form tree; however, some brief diagrams may help to illustrate the general
structure:

kform ksubform kguide kcontrol (pane)

kselection

kselection

kselection

Figure 25: A simplified representation of the form tree associated with a GUI having a single pane on a
single subform. Note that the data type associated with the form tree as a whole is the kform.

kform

ksubform kcontrol

(guidepane)

kguidekguide

kcontrol (pane)

kselection

kselection

kselection

kcontrol (pane)

kselection

kselection

kselection

kselection

kselection

kselection

Figure 26: A simplified representation of the form tree associated with a GUI having a single subform
with a guidepane and two panes. The guidepane has a variety of selections on it, as well as two guide but-
tons which provide access to the two separate panes.

8-20

Xvforms Program Services Volume III - Chapter 8

The kform data type corresponds to the form tree as a whole, the ksubform data type corresponds to a subform
branch of the form tree, the kcontrol data type corresponds to a pane branch of the form tree, the kselection
data type corresponds to a GUI item leaf of the form tree, and so on.

Again, it is not important to understand the complexity of the form tree, except in a general way. An under-
standing of the form tree, however, does help to clarify the use of the kform_struct pointer. The xvroutine code
generator will produce a pointer of data type kform_struct in the GUI information structure for each item on
the GUI. This kform_struct pointer is generated specifically so that the xvroutine may call xvf_set_attribute()
to modify its GUI during runtime if necessary.

A kform_struct is simply a "generic" form tree/branch pointer. That is, it may contain a pointer to a kform, a
ksubform, a kcontrol, or a kselection; a type flag indicates which type of pointer it actually contains. Thus,
calls to xvf_set_attribute() are the same, regardless of whether the portion of the form tree that will be modified
is a subform branch, a pane branch, or a GUI item leaf.

kform ksubform kguide kcontrol (pane)

kselection

kselection

kselection

kformstruct3kformstruct1

kformstruct2

kformstruct4

kformstruct5

kformstruct6

kformstruct7

Figure 27: A kform_struct can be a pointer to any part of the form tree. Pointers of type kform_struct are
automatically generated in the GUI Information structure for each selection on the GUI of an xvroutine.
Then, these pointers may be used any time a call to xvf_set_attribute() is needed to change some attribute
of a GUI item.

Having established the purpose of the xvforms library, the use of the kform pointer to the form tree and the
kform_struct generic form tree/branch pointer, let’s go on to examine the available routines. Public routines in
the xvforms library include:

• xvf_add_extra_call() - add extra callback to GUI item
• xvf_add_gui_callback() - add callback to a GUI item
• xvf_clear_selections() - reset GUI items of xvroutine
• xvf_create_form() - create and map GUI of xvroutine
• xvf_destroy_form() - destroy GUI of xvroutine & free associated memory
• xvf_get_attribute() - get a single attribute of a GUI item
• xvf_get_attributes() - get multiple attributes of a GUI item
• xvf_get_xvobject() - return desired xvobject component of kformstruct
• xvf_remove_extra_call() - remove function call from GUI item
• xvf_remove_gui_callback() - remove callback from GUI item
• xvf_run_form() - run the GUI of an xvroutine

8-21

Xvforms Program Services Volume III - Chapter 8

• xvf_set_attribute() - set a single attribute of a GUI item
• xvf_set_attributes() - set multiple attributes of a GUI item

C. Routines for Form Creation, Display, Etc

These routines are used to create a form from a User Interface Specification (UIS) file, to display and run the
form, to destroy it, and to clear its selections of old values.

C.1. xvf_create_form() — create and map GUI of xvroutine

Synopsis
kform *xvf_create_form(

char *filename,
int glyph_type,
void (*callback)(kform *, ksubform *, kaddr),
kaddr client_data,
int x,
int y,
int editable)

Input Arguments
filename

name of the UIS file
glyph_type

type of glyph associated with this form:

KNONE or SIMPLE

callback
optional callback routine for this form

client_data
client data for callback routine

x
X location at which to place the newly created GUI. If values of x and y are both negative 1, placement
of the GUI must be done manually.

y
Y location at which to place the newly created GUI. If values of x and y are both negative 1, placement
of the GUI must be done manually.

editable
controls use of the menuforms by the user.

XVF_FULL_EDIT: if GUI is to be completely editable, eg,
as when creating a GUI with preview or guise.

XVF_PARTIAL_EDIT: for normal use where the GUI of the
application is to be editable by the user
in ways that will not affect the performance

8-22

Xvforms Program Services Volume III - Chapter 8

of the program (for example, button titles
or location).

XVF_NO_EDIT: will disable use of the menuforms altogether,
so that the user will not be able to change
any aspect of the GUI.

Returns
A pointer to the form tree on success, NULL on failure.

Description
This is the main driver for the routines that creates and maps the forms of an xvroutine, both externally
(the GUI made up of objects) and internally (the abstract data structure referred to as a form tree).

C.2. xvf_run_form() — run the GUI of an xvroutine

Synopsis
void xvf_run_form(void)

Returns
none

Description
Runs the GUI of an xvroutine in a loop that is a modified version of XtMainLoop(). XEvents are
waited on and dispatched until the number of toplevel windows is zero. The routine then returns to the
calling routine.

C.3. xvf_destroy_form() — destroy GUI of xvroutine & free associated memory

Synopsis
void xvf_destroy_form(

kform *form)

Input Arguments
form

pointer to the form tree being destroyed

8-23

Xvforms Program Services Volume III - Chapter 8

Description
Destroys all GUI objects associated with a particular form tree and the form tree itself.

C.4. xvf_clear_selections() — reset GUI items of xvroutine

Synopsis
void xvf_clear_selections(

kform *form)

Input Arguments
form

pointer to the form tree associated with the GUI to be cleared.

Description
Resets all action buttons and "live" selections on the GUI, so that they are not considered "selected" by
the user. The necessary call to this routine is automatically generated by conductor in the main GUI
driver of an xvroutine, located in "form_drv.c".

D. Setting & Getting GUI Item Attributes

The xvf_set_attribute() function allows the xvroutine to change attributes of the items on its GUI during run-
time, and can be useful in a variety of situations.

For example, some changes that might be made by an application to its GUI during runtime include:

The values displayed in the parameter boxes of InputFile, OutputFile, Integer, Float, Double,
String, or StringList selections.

The values set on Toggles, Logicals, Cycles, Lists, and Flags.

The title of a GUI selection.

The text displayed by Blank selections so that they may be used to display current values, parame-
ter settings, or other pertinent information.

Deactivation or re-activation of a particular button or selection depending on some other action by
the user.

8-24

Xvforms Program Services Volume III - Chapter 8

The contents displayed in a list selection.

For these and a wide variety other reasons, xvf_set_attribute() can be called to change attributes of GUI items
as a reaction to certain state information of the xvroutine. The following example changes the value of a list
selection to the 1st element of the list:

xvf_set_attribute(pane_info->list_struct, XVF_LIST_INDEX, 1);

All candidates for the kform_struct first parameter are defined by the xvroutine code generator as elements of
the GUI Information structure which is generated in "form_info.h" (please see Chapter 6 of the Toolbox Pro-
grammer’s Manual). Pass the field in the GUI Information structure named "var_struct" where var is the vari-
able name you provided on the UIS line that defines the GUI item that you wish to change.

Following the kform_struct parameter is an attribute/value pair. The supported attributes are defined by the
xvforms library; the data type of the corresponding value is determined by the nature of the attribute.

The xvf_get_attribute() routine can be used to obtain the current values of the same GUI attributes. Calls to
xvf_get_attribute(), howev er, are very rare. This is because there is generally no need for the xvroutine to
inquire about attribute settings of GUI selections; it was, after all, the xvroutine that set the values of the
attributes in the first place.

Both xvf_set_attribute() and xvf_get_attribute() have variable argument versions. For example, consider multi-
ple sequential calls to xvf_set_attribute() using the same kform_struct pointer, as in the following:

xvf_set_attribute(pane_info->i_struct, XVF_TITLE, "Latest and Greatest");
xvf_set_attribute(pane_info->i_struct, XVF_FILE_NAME, "image:ball");

If desired, the above code could be combined into a single call to the variable argument xvf_set_attributes(), as
in:

xvf_set_attributes(pane_info->i_struct,
XVF_TITLE, "Latest and Greatest",
XVF_FILE_NAME, "image:ball",
NULL);

The two code segments are identical in effect.

Note that xvf_set_attribute(), xvf_set_attribute(), and their variable argument counterparts are not available to
kroutines, as kroutines by definition are not linked against the xvforms library.

IMPORTANT NOTE

When you use xvf_set_attribute() to set the value of a selection, it DOES NOT MODIFY THE CORRE-
SPONDING VARIABLE IN THE GUI INFORMATION STRUCT. You must set the GUI Information struct
variable yourself! For example, suppose you have an integer named n, with a current value of 0. Then, sup-
pose that you set the value of the integer selection to 100, using:

xvf_set_attribute(pane_info->n_struct, XVF_INT_VAL, 100);

At this point, the value displayed in the text box of the integer selection will read, "100." However, the value
of "pane_info->n" will still be set to 0! Thus, to keep the values in the GUI Information structure in sync with
the values displayed on the GUI, the next line of code should be:

pane_info->n = 100;

8-25

Xvforms Program Services Volume III - Chapter 8

Neglecting to set the GUI Information structure values after calls to xvf_set_attribute() that change the values
of a selection can cause very subtle bugs in an xvroutine.

D.1. xvf_set_attribute() — set a single attribute of a GUI item

Synopsis
xvf_set_attribute(

kform_struct kformstruct,
char *attribute,
data value)

Input Arguments
kformstruct

GUI item for which to set the attribute
attribute

the attribute name
value

the attribute value

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
sets a single attribute for a GUI item

Restrictions
Value provided must be of the expected data type

D.2. xvf_get_attribute() — get a single attribute of a GUI item

Synopsis
xvf_get_attribute(

kform_struct kformstruct,
char *attribute,
data *value)

8-26

Xvforms Program Services Volume III - Chapter 8

Input Arguments
kformstruct

GUI item for which to get the attribute
attribute

the attribute name
value

pointer to the the attribute value

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
gets a single attribute for a GUI item

Restrictions
Value pointer passed in must be of the expected data type

D.3. xvf_set_attributes() — set multiple attributes of a GUI item

Synopsis
int xvf_set_attributes(

kform_struct *kformstruct,
kvalist)

Input Arguments
kformstruct

the generic kform_struct associated with the GUI item (automatically generated by conductor in the
GUI Information Structure) attribute - The attribute to be changed value - value to which to set
attribute [attr/value]- as many additional attribute/value pairs as desired NULL - attribute/value
pairs must be ended with NULL

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Sets attributes associated with GUI items and UIS lines of GUI items supported by the xvforms library.
Note that the variable argument list of attribute/pairs MUST be terminated by NULL.

8-27

Xvforms Program Services Volume III - Chapter 8

D.4. xvf_get_attributes() — get multiple attributes of a GUI item

Synopsis
int xvf_get_attributes(

kform_struct *kformstruct,
kvalist)

Input Arguments
kformstruct

the generic kform_struct associated with the GUI item (automatically generated by conductor in the
GUI Information Structure) attribute - The attribute to be changed value - value to which to set
attribute [attr/value]- as many additional attribute/value pairs as desired NULL - attribute/value
pairs must be ended with NULL

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Gets attributes associated with GUI items and UIS lines of GUI objects supported by the xvforms
library.

E. GUI Item Resource Set

E.1. Complete GUI Item Resource Listing

Complete GUI Item Resource Listing

Attribute Described In Section

XVF_ACTIVATE General GUI Item Attributes

XVF_BUTTONHEIGHT General GUI Item Attributes

XVF_BUTTONTITLE General GUI Item Attributes

XVF_BUTTONWIDTH General GUI Item Attributes

XVF_BUTTONX General GUI Item Attributes

XVF_BUTTONY General GUI Item Attributes

XVF_CLIENTDATA General GUI Item Attributes

XVF_CYCLE_ADD Attributes of Cycles

8-28

Xvforms Program Services Volume III - Chapter 8

Complete GUI Item Resource Listing

Attribute Described In Section

XVF_CYCLE_CONTENTS Attributes of Cycles

XVF_CYCLE_DELETE Attributes of Cycles

XVF_CYCLE_DELETEALL Attributes of Cycles

XVF_CYCLE_INDEX Attributes of Cycles

XVF_CYCLE_LABEL Attributes of Cycles

XVF_CYCLE_SIZE Attributes of Cycles

XVF_CYCLE_START Attributes of Cycles

XVF_CYCLE_VAL Attributes of Cycles

XVF_DELETE General GUI Item Attributes

XVF_DESCRIPTION General GUI Item Attributes

XVF_DISPLAY_PANE Attributes for Subform And Pane Display

XVF_DISPLAY_SUBFORM Attributes for Subform And Pane Display

XVF_DOUBLE_DEF Attributes of Doubles

XVF_DOUBLE_LOWER Attributes of Doubles

XVF_DOUBLE_PREC Attributes of Doubles

XVF_DOUBLE_UPPER Attributes of Doubles

XVF_DOUBLE_VAL Attributes of Doubles

XVF_FILE_CHECK Attributes of Input & Output Files

XVF_FILE_DEF Attributes of Input & Output Files

XVF_FILE_NAME Attributes of Input & Output Files

XVF_FLOAT_DEF Attributes of Floats

XVF_FLOAT_LOWER Attributes of Floats

XVF_FLOAT_PREC Attributes of Floats

XVF_FLOAT_UPPER Attributes of Floats

XVF_FLOAT_VAL Attributes of Floats

XVF_GUIDEPANETITLE Attributes of Floats

XVF_HEIGHT General GUI Item Attributes

XVF_HELPPATH Attributes of Help Buttons

XVF_INT_DEF Attributes of Integers

XVF_INT_LOWER Attributes of Integers

XVF_INT_UPPER Attributes of Integers

XVF_INT_VAL Attributes of Integers

XVF_LIST_ADD Attributes of Lists

XVF_LIST_CONTENTS Attributes of Lists

XVF_LIST_DELETE Attributes of Lists

XVF_LIST_DELETEALL Attributes of Lists

XVF_LIST_INDEX Attributes of Lists

XVF_LIST_LABEL Attributes of Lists

XVF_LIST_SIZE Attributes of Lists

XVF_LIST_START Attributes of Lists

XVF_LIST_VAL Attributes of Lists

XVF_LITERAL General GUI Item Attributes

XVF_LIVE General GUI Item Attributes

XVF_LOGIC_0LABEL Attributes of Logicals

XVF_LOGIC_1LABEL Attributes of Logicals

XVF_LOGIC_DEF Attributes of Logicals

8-29

Xvforms Program Services Volume III - Chapter 8

Complete GUI Item Resource Listing

Attribute Described In Section

XVF_LOGIC_VAL Attributes of Logicals

XVF_MECHANISM Attributes of Integers, Floats, & Doubles

XVF_OPTIONAL General GUI Item Attributes

XVF_OPTSEL General GUI Item Attributes

XVF_PRINT_PANE Attributes For Printing UIS Files

XVF_PRINT_SUBFORM Attributes For Printing UIS Files

XVF_PRINT_UIS Attributes For Printing UIS Files

XVF_ROUTINE Attributes of Routine Buttons

XVF_STRING_DEF Attributes of Strings

XVF_STRING_MULTILINE Attributes of Strings

XVF_STRING_VAL Attributes of Strings

XVF_TITLE General GUI Item Attributes

XVF_TOGGLE_NUM Attributes of Toggles

XVF_TOGGLE_SIZE Attributes of Toggles

XVF_TOGGLE_TYPE Attributes of Toggles

XVF_TOGGLE_VAL Attributes of Toggles

XVF_VARIABLE General GUI Item Attributes

XVF_WIDTH General GUI Item Attributes

XVF_X General GUI Item Attributes

XVF_XPOS General GUI Item Attributes

XVF_Y General GUI Item Attributes

XVF_YPOS General GUI Item Attributes

E.2. General GUI Item Attributes

The following is a listing of general GUI item attributes. These are attributes which are common to a large
number of GUI items.

Descriptions of General Xvforms Attributes

Attribute Description

XVF_ACTIVATE This attribute, which may be set to TRUE (1) or FALSE (0), indicates

whether an item on the GUI is active or inactive. If an item is inactive,

it will still be displayed on the GUI; however, it will not accept any

input. It may appear undersized, fuzzy, and text may be difficult to

read. GUI selections may be de-activated by setting Activate to FALSE

(0). De-activating a guide button will eliminate access to its associated

pane, and de-activating a subform button will eliminate access to its

associated subform. This attribute has no effect on CLUI arguments.

8-30

Xvforms Program Services Volume III - Chapter 8

Descriptions of General Xvforms Attributes

Attribute Description

XVF_BUTTONHEIGHT This attribute specifies the height of a button in characters. It is only

applicable to GUI items consisting of a single button (such as help but-

tons, routine buttons, subform buttons, guide buttons, and so on). For

any GUI button besides subform buttons and guide buttons, this

attribute is interchangeable with the Height. However, on a subform,

the ButtonHeight refers to the height of the subform button while the

Height specifies the height of the subform itself. Similarly for panes,

the ButtonHeight refers to the height of the guide button, while the

Height specifies the height of the pane itself.

XVF_BUTTONTITLE This attribute specifies the title on a button. It is only applicable to GUI

items consisting of a single button (such as help buttons, routine but-

tons, subform buttons, guide buttons, and so on). For any GUI button

besides subform buttons and guide buttons, this attribute is interchange-

able with the Title. However, on a subform, the ButtonTitle refers to

the title on the subform button while the Title specifies the title dis-

played on the subform itself. Similarly for panes, the ButtonTitle refers

to the title on the guide button, while the Title specifies the title dis-

played on the pane itself.

XVF_BUTTONWIDTH This attribute specifies the width of a button in characters. It is only

applicable to GUI items consisting of a single button (such as help but-

tons, routine buttons, subform buttons, guide buttons, and so on). For

any GUI button besides subform buttons and guide buttons, this

attribute is interchangeable with the Width. However, on a subform,

the ButtonWidth refers to the width of the subform button while the

Width specifies the width of the subform itself. Similarly for panes, the

ButtonWidth refers to the width of the guide button, while the Width

specifies the width of the pane itself.

XVF_BUTTONX This attribute is used to position a button horizontally on its backplane.

The X location of the button is specified floating point character widths.

It is only applicable to GUI items consisting of a single button (such as

help buttons, routine buttons, subform buttons, and guide buttons). For

any GUI button besides subform buttons and guide buttons, this

attribute is interchangeable with X. However, on a subform, the But-

tonX refers to the X location of the subform button, as opposed to the

location of the subform itself. For panes, ButtonX refers to the location

of the guide button, while X specifies the location of the pane on its

backplane.

8-31

Xvforms Program Services Volume III - Chapter 8

Descriptions of General Xvforms Attributes

Attribute Description

XVF_BUTTONY This attribute is used to position a button vertically on its backplane.

The Y location of the button is specified floating point character widths.

It is only applicable to GUI items consisting of a single button (such as

help buttons, routine buttons, subform buttons, and guide buttons). For

any GUI button besides subform buttons and guide buttons, this

attribute is interchangeable with Y. Howev er, on a subform, the But-

tonY refers to the Y location of the subform button, as opposed to the

location of the subform itself. For panes, ButtonY refers to the location

of the guide button, while Y specifies the location of the pane on its

backplane.

XVF_CLIENTDATA This attribute allows you to set and get a client_data pointer that is

associated with the GUI item specified. By default, the client_data is

NULL; however, you may set it to any pointer as desired, and retrieve it

for use when desired. See Program Services Volume I, Chapter 2, Sec-

tion L.6 for an explanation on the use of client_data pointers in general.

XVF_DELETE This is an action attribute; that is, it can only be used with

xvf_set_attribute(s)(), and should be passed a value of TRUE. When

used, it will delete the GUI item specified.

XVF_DESCRIPTION This attribute accommodates a brief description of the purpose of the

selection. Used only by the CLUI, comments in auto-generated code

are taken directly from the description field. Descriptions should be

clear and concise.

XVF_GUIDEPANE_TITLE This attribute specifies the title of the Guidepane on subforms with

guidepanes (ie, those subforms with multiple panes and a set of guide

buttons). It is only specified for subforms, and is distinct from the Title

of the subform, which can be specified separately.

XVF_GUIDEPANE_TITLE_XPOS This attribute is used to position the Title of the guide pane within the

subform. The X offset is specified in floating point character widths,

from the upper left hand corner of the GUI item.

XVF_GUIDEPANE_TITLE_YPOS This attribute is used to position the Title of the guide pane within the

subform. The Y offset is specified in floating point character heights,

from the upper left hand corner of the GUI item.

XVF_HEIGHT The Height attribute is used to size the GUI item. The overall height of

the entire GUI item is specified in floating point character heights. To

tack the GUI item to the right side of its backplane, a value of -1.0 is

used. InputFiles, OutputFiles, Integers, Floats, Doubles, Flags, and

Blanks are internally restricted to a Height of 1.0; thus, setting the

Height attribute on one of these selections will have no effect. Strings

and StringLists can have a height more than 1.0; however, the

XVF_STRING_MULTILINE attribute must be set to TRUE (1) prior to

setting the height.

8-32

Xvforms Program Services Volume III - Chapter 8

Descriptions of General Xvforms Attributes

Attribute Description

XVF_HEIGHT_TACKED_SEL If desired, the HeightTacked attribute may be used instead of the Height

attribute to size the GUI item vertically. When the height of the GUI

item is tacked, the item will appear at the location specified by the X

and Y attributes, but the bottom will be pinned, or "tacked" to the bot-

tom of the backplane of the GUI item, so that the height of the GUI

item depends on its location and the height of its backplane. This is

especially useful with InputFile, OutputFile, Workspace, and other GUI

items as it allows them to grow and shrink when the backplane is

resized by the user with the window manager. Note that setting Width-

Tacked to TRUE is identical to setting Width to -1.0. Note that setting

HeightTacked to TRUE is identical to setting Height to -1.0. Input-

Files, OutputFiles, Integers, Floats, Doubles, Flags, and Blanks are

internally restricted to a Height of 1.0; thus, setting this attribute on one

of these selections will have no effect. Strings and StringLists can have

a height more than 1.0; however, the XVF_STRING_MULTILINE

attribute must be set to TRUE (1) prior to setting height tacking.

XVF_LITERAL This attribute stores the literal string value of the current value for an

InputFile, OutputFile, Integer, Float, Double, String, or StringList

selection (ie, all selections with a text parameter box). For example, if

the value 8.76 appears in the text parameter box of a Double selection,

the value of the double is 8.76; however, the Literal value of the double

is the string, "8.76". It is necessary to have literals so that the expres-

sion parser can be used with various types of selections. For example,

in VisiQuest, the user might enter the string "(i+10)/j" as the value for

an Integer selection. The value of the integer will be calculated accord-

ing to the values of i and j; if i was currently set to 2 and j was cur-

rently set to 6, the integer value of the expression would be 2. How-

ev er, the literal value of the integer selection would be "(i+10)/j"; this

string needs to be saved so that VisiQuest can properly save and restore

workspaces. In general, the Literal attribute should not be set by the

application; however, it may be retrieved for inspection if desired.

8-33

Xvforms Program Services Volume III - Chapter 8

Descriptions of General Xvforms Attributes

Attribute Description

XVF_LIVE This attribute, which may be set to TRUE (1) or FALSE (0), specifies

whether or not a selection is "live". When a selection is "live", software

control is immediately returned to the application program when the

user initiates a change of value in the selection. A change of value can

be initiated in the following ways:

1) When the user hits <CR> in the text parameter box of a

"live" InputFile, OutputFile, Integer, Float, Double, String, or

StringList selection

2) When the user moves a scroll bar associated with a "live"

Integer, Float, or Double selection

3) When the user chooses a new value for a Toggle, Logical,

Flag, List, DisplayList, StringList or Cycle selection

In the case of a kroutine, making a selection "live" means that when a

change of value is initiated on the GUI in VisiQuest, the network

involving the glyph associated with that kroutine will be re-run from

that point on.

In the case of an xvroutine, making a selection "live" means that when

a change of value is initiated on the xvroutine’s GUI, software control

will be passed immediately back to the xvroutine. Thus, the xvroutine

may take appropriate action according to the value of the selection. An

example is found in the GUI of the guise design tool. Here, the Input-

File selection for the "Input UIS File" option is "live". Thus, when the

user enters the name of a new input UIS file and hits <cr>, software

control is returned to the guise application, where the routine that han-

dles the input of a new UIS file is immediately called. Note that there

is only one piece of information necessary to complete the input action

- a new UIS filename. This makes the "Input UIS File" selection an

ideal choice to be "live".

When a selection is not "live" (FALSE), software flow will not be

returned to the application until the user clicks on an action button, or

until the user changes the value of another selection, which happens to

be "live". If more than one piece of information is needed before action

can be initiated, however, individual selections should NOT be "live".

8-34

Xvforms Program Services Volume III - Chapter 8

Descriptions of General Xvforms Attributes

Attribute Description

XVF_OPTIONAL This attribute, which may be set to TRUE (1) or FALSE (0), indicates

whether a GUI selection or CLUI argument is optional or required. On

the GUI, a selection that is optional will have a small box to the left of

the title of the selection. The user may click on the box (highlighting

it) to indicate that they wish to use the value specified for the selection.

On the CLUI, an argument that is optional may be omitted from the

command line, in which case it will take on the default value.

XVF_OPTSEL The "Optional Selected" attribute affects both the GUI and the CLUI,

and may take on one of three values: 0, 1, or 2. When a selection is not

optional, this field must be set to 1. When a selection is optional, it

may have any of the three values, which have meanings as follows:

a) 0 -- NOT SELECTED

On both the GUI and the CLUI, a value of NOT SELECTED (0) indi-

cates that the default action is not to use the value of the optional selec-

tion at all, or to use the default value of the selection. On the GUI, this

is visually represented by the optional box of the selection being un-

highlighted.

b) 1 -- SELECTED

On both the GUI and the CLUI, a value of SELECTED (1) indicates

that the default action is to use the value of the optional selection,

whether it be the default value or a new value provided by the user. On

the GUI, this is visually represented by the optional box of the selection

being highlighted.

c) 2 -- SELECTED, BUT NOT SHOWN

A value of SELECTED, BUT NOT SHOWN (2) causes the selection to

act as if the attribute was set to SELECTED (1). However, the optional

box for the selection will not appear on the GUI. When a kroutine has

many optional CLUI arguments, the optional boxes that appear on the

pane for VisiQuest GUI may be considered bulky or unsightly; this set-

ting provides a mechanism for simplifying the GUI. Note: You are

NOT allowed to set a member of a group to this value.

XVF_TITLE The Title attribute specifies the string that will be displayed on the GUI

to identify a selection. The title may contain spaces, but should remain

fairly short to be effective. Titles may be left blank. If a very long title

is needed, it is recommended that you use a blank selection to hold the

text separately, and leave the selection itself with no title.

8-35

Xvforms Program Services Volume III - Chapter 8

Descriptions of General Xvforms Attributes

Attribute Description

XVF_VARIABLE This attribute provides a unique name for the variable associated with a

GUI item or CLUI argument. In code generated for the command line

user interface of any VisiQuest program, the variable field becomes the

name of the argument. In code generated for the graphical user inter-

face of an xvroutine, the variable field is translated into the naming

conventions for the GUI Information structure that provides the link

between the application program and its GUI.

XVF_WIDTH The Width attribute is used to size the GUI item; it specifies the overall

width of the entire GUI item in floating point character widths. To tack

the GUI item to the right side of its backplane, a value of -1.0 is used.

XVF_WIDTH_TACKED_SEL If desired, the WidthTacked attribute may be used instead of the Width

attribute to size the GUI item vertically. When the width of the GUI

item is tacked, the item will appear at the location specified by the X

and Y attributes, but the right side will be pinned, or "tacked" to the

right side of the backplane of the GUI item, so that the width of the

GUI item depends on its location and the width of its backplane. This

is especially useful with InputFile, OutputFile, Workspace, and other

GUI items as it allows them to grow and shrink when the backplane is

resized by the user with the window manager. Note that setting Width-

Tacked to TRUE is identical to setting Width to -1.0.

XVF_X This attribute is used to position the GUI item horizontally on its back-

plane. The X location of the GUI item is specified floating point char-

acter widths.

XVF_XPOS This attribute is used to position the Title of the GUI item within the

GUI item itself. The X offset is specified in floating point character

widths, from the upper left hand corner of the GUI item.

XVF_Y This attribute is used to position the GUI item vertically on its back-

plane. The Y location of the GUI item is specified floating point char-

acter heights.

XVF_YPOS This attribute is used to position the Title of the GUI item within the

GUI item itself. The Y offset is specified in floating point character

heights, from the upper left hand corner of the GUI item.

Summary of General Xvforms Attributes

Attribute Type GUI Legal
Items Values

XVF_ACTIVATE int Any GUI items

except:

Blanks

Workspaces

TRUE/FALSE

8-36

Xvforms Program Services Volume III - Chapter 8

Summary of General Xvforms Attributes

Attribute Type GUI Legal
Items Values

XVF_BUTTONHEIGHT float Any GUI button,

including:

ActionButtons

GuideButtons

(panes)

HelpButtons

QuitButtons

RoutineButtons

SubformButtons

(subforms)

height > 0.0 (in characters)

XVF_BUTTONTITLE char * Any GUI button,

including:

ActionButtons

GuideButtons

(panes)

HelpButtons

QuitButtons

RoutineButtons

SubformButtons

(subforms)

any string

XVF_BUTTONWIDTH float Any GUI button,

including:

ActionButtons

GuideButtons

(panes)

HelpButtons

QuitButtons

RoutineButtons

SubformButtons

(subforms)

width > 0.0 (in characters)

XVF_BUTTONX float Any GUI button,

including:

ActionButtons

GuideButtons

(panes)

HelpButtons

QuitButtons

RoutineButtons

SubformButtons

(subforms)

x > 0.0 (in characters)

8-37

Xvforms Program Services Volume III - Chapter 8

Summary of General Xvforms Attributes

Attribute Type GUI Legal
Items Values

XVF_BUTTONY float Any GUI button,

including:

ActionButtons

GuideButtons

(panes)

HelpButtons

QuitButtons

RoutineButtons

SubformButtons

(subforms)

y > 0.0 (in characters)

XVF_CLIENTDATA kaddr Any GUI item except

Form

pointer to desired client_data

XVF_DELETE int Any GUI items

except:

Forms

GuidePanes

TRUE (Action Attribute)

XVF_DESCRIPTION char * ActionButtons

Cycles

DisplayLists

Doubles

Flags

Floats

HelpButtons

InputFiles

Integers

Lists

Logicals

OutputFiles

RoutineButtons

Strings

StringLists

Toggles

Workspaces

any string

XVF_GUIDEPANE_TITLE char * Subforms having a

Guidepane

any string

XVF_GUIDEPANE_TITLE_XPOS float Subforms having a

Guidepane

x >= 0.0

XVF_GUIDEPANE_TITLE_YPOS float Subforms having a

Guidepane

y >= 0.0

XVF_HEIGHT int Any GUI items

except:

Blanks

height > 0.0 (in characters)

8-38

Xvforms Program Services Volume III - Chapter 8

Summary of General Xvforms Attributes

Attribute Type GUI Legal
Items Values

XVF_HEIGHT_TACKED_SEL int Any GUI items

except:

Blanks

TRUE/FALSE

XVF_LITERAL int Doubles

Floats

InputFiles

Integers

OutputFiles

Strings

StringLists

Toggles

any string

XVF_LIVE int Cycles

DisplayLists

Doubles

Flags

Floats

InputFiles

Integers

Lists

Logicals

OutputFiles

Strings

StringLists

Toggles

TRUE/FALSE

XVF_OPTIONAL int Cycles

DisplayLists

Doubles

Flags

Floats

InputFiles

Integers

Lists

Logicals

OutputFiles

Strings

StringLists

Toggles

TRUE/FALSE

8-39

Xvforms Program Services Volume III - Chapter 8

Summary of General Xvforms Attributes

Attribute Type GUI Legal
Items Values

XVF_OPTSEL int Cycles

DisplayLists

Doubles

Flags

Floats

InputFiles

Integers

Lists

Logicals

OutputFiles

Strings

StringLists

Toggles

TRUE/FALSE

XVF_TITLE char * Any GUI item any string

XVF_VARIABLE int Any GUI item any string that will not cause C compiler

syntax errors

XVF_WIDTH float Any GUI items

except:

Blanks

width > 0.0 (in characters)

XVF_WIDTH_TACKED_SEL int Any GUI items

except:

Blanks

TRUE/FALSE

XVF_X float Any GUI items

except:

Blanks

x >= 0.0 (in characters)

XVF_XPOS float Forms

GuidePanes

Panes

Subforms

Toggles

Blanks

xpos >= 0.0

XVF_Y float Any GUI items

except:

Blanks

y >= 0.0 (in characters)

XVF_YPOS float Any GUI items

except:

Blanks

ypos >= 0.0 (in characters)

8-40

Xvforms Program Services Volume III - Chapter 8

E.3. Attributes of InputFiles and OutputFiles

The following is a listing of GUI item attributes that only apply to InputFile and OutputFile selections.

Descriptions of Attributes For InputFile & OutputFile Selections

Attribute Description

XVF_FILE_CHECK When set to TRUE (1), this attribute causes filenames entered by the

user into InputFile selections to be checked for existence and read per-

mission; if a file entered does not exist or is not readable, an error mes-

sage is issued. For OutputFile selections, the file entered by the user

will be checked for write permission; if the file entered is not writable,

an error message is issued. To prevent InputFile and OutputFile selec-

tions from checking validity of files, set this attribute to FALSE (0).

XVF_FILE_DEF The FileDefault attribute specifies a default filename to be used with an

InputFile or OutputFile selection. The default filename may be an

alias, as specified in the $TOOLBOX/repos/Aliases file, such as

"image:ball". Alternatively, it may be the full path to a file. Tildas are

expanded appropriately. The $TOOLBOX variable may be used as part

of the path. If no full path, but only a file name, is specified, the file is

considered to exist in the local "." directory. Howev er, omission of the

path is generally not a good idea, as one cannot predict where in the

directory structure a user will execute the application.

XVF_FILE_NAME The FileName attribute specifies the current value of the filename to be

used with an InputFile, OutputFile, AnswerInputFile, or AnswerOut-

putFile selection. The filename may be an alias, as specified in the

$TOOLBOX/repos/Aliases file, or may be the full path to a file. The

$TOOLBOX variable may be used as part of the path. If no full path is

specified, the file is considered to exist in the local "." directory.

Summary of Attributes For InputFile & OutputFile Selections

Attribute Type GUI Legal
Items Values

XVF_FILE_CHECK int InputFiles,

OutputFiles

TRUE/FALSE

XVF_FILE_DEF char * InputFiles,

OutputFiles

any file name

XVF_FILE_NAME char * InputFiles,

OutputFiles

any file name

8-41

Xvforms Program Services Volume III - Chapter 8

E.4. Attributes of Logicals

The following is a listing of GUI item attributes that apply to Logical selections.

Descriptions of Attributes For Logical Selections

Attribute Description

XVF_LOGIC_0LABEL This is the label that will appear on the value button of the logical

selection when the value of the logical is set to 0 (FALSE). The most

commonly used label 0 strings are "False" and "No".

XVF_LOGIC_1LABEL This is the label that will appear on the value button of the logical

selection when the value of the logical is set to 1 (TRUE). The most

commonly used label 1 strings are "True" and "Yes".

XVF_LOGIC_DEF This attribute specifies the default value to be used with a Logical

selection. It may be set to TRUE (1) or FALSE (0).

XVF_LOGIC_VAL This attribute specifies the current value of a Logical selection. It may

be set to TRUE (1) or FALSE (0).

Summary of Attributes For Logical Selections

Attribute Type GUI Legal
Items Values

XVF_LOGIC_0LABEL char * Logicals Any string

XVF_LOGIC_1LABEL char * Logicals Any string

XVF_LOGIC_DEF int Logicals 0 or 1

XVF_LOGIC_VAL int Logicals 0 or 1

E.5. Attributes of Integers

The following is a listing of GUI item attributes that only apply to Integer selections.

Descriptions of Attributes For Integer Selections

Attribute Description

XVF_INT_DEF This attribute specifies the default value to be used with an Integer

selection. The values of the Lower and Upper bounds determine legal

values for the integer default, which may be unbounded, bounded

between a lower and an upper value, strictly less than zero, less than or

equal to zero, strictly greater than zero, or greater than or equal to zero.

8-42

Xvforms Program Services Volume III - Chapter 8

Descriptions of Attributes For Integer Selections

Attribute Description

XVF_INT_LOWER This attribute is used to specify the lower bound of the legal values for

a bounded Integer selection. It is used in conjunction with the Upper

bound to specify a integer that is unbounded, strictly less than zero, less

than or equal to zero, strictly greater than zero, or greater than or equal

to zero. The following rules apply:

Lower = Upper = -2 { leg al values < 0 }

Lower = Upper = -1 { leg al values <= 0 }

Lower = Upper = 1 { legal values >= 0 }

Lower = Upper = 2 { legal values > 0 }

Lower = Upper = X { no range checking }

Lower = X; Upper = Y { X <= leg al value <= Y }

XVF_INT_UPPER This attribute is used to specify the upper bound of the legal values for

a bounded Integer selection. It is used in conjunction with the Lower

bound to specify a integer that is unbounded, strictly less than zero, less

than or equal to zero, strictly greater than zero, or greater than or equal

to zero. The following rules apply:

Lower = Upper = -2 { leg al values < 0 }

Lower = Upper = -1 { leg al values <= 0 }

Lower = Upper = 1 { legal values >= 0 }

Lower = Upper = 2 { legal values > 0 }

Lower = Upper = X { no range checking }

Lower = X; Upper = Y { X <= leg al value <= Y }

XVF_INT_VAL The IntegerValue attribute specifies the current value of a Integer selec-

tion. The values of the lower and upper bounds determine legal values

for the integer value, which may be unbounded, bounded between a

lower and an upper value, strictly less than zero, less than or equal to

zero, strictly greater than zero, or greater than or equal to zero.

XVF_MECHANISM The Mechanism attribute is used to specify whether or not a scrollbar

will be used with integers, floats, or doubles that are strictly bound (ie,

the lower bound is not equal to the upper bound). When integers,

floats, or doubles are strictly bound and the width is sufficient, a scroll

bar will appear to the right of the parameter box, allowing the user to

set the value with the scroll bar. To turn off the scrollbar, provide a

value of 0; to enable the scrollbar, provide a value of 1. In the future,

specifying a 2 may indicate the preference for an alternate mechanism

to be used for this purpose, such as a dial.

Summary of Attributes For Integer Selections

Attribute Type GUI Legal
Items Values

XVF_INT_DEF int Integers Any integer value, within bounds speci-

fied by XVF_INT_LOWER and

XVF_INT_UPPER

8-43

Xvforms Program Services Volume III - Chapter 8

Summary of Attributes For Integer Selections

Attribute Type GUI Legal
Items Values

XVF_INT_LOWER int Integers lower < XVF_INT_UPPER

XVF_INT_UPPER int Integers upper > XVF_INT_LOWER

XVF_INT_VAL int Integers Any integer value, within bounds speci-

fied by XVF_INT_LOWER and

XVF_INT_UPPER

XVF_MECHANISM int Integers

Floats

Doubles

0 or 1

E.6. Attributes of Floats

The following is a listing of GUI item attributes that only apply to Float selections.

Descriptions of Attributes For Float Selections

Attribute Description

XVF_FLOAT_DEF The FloatDefault attribute specifies a default value to be used with a

Float selection. The values of the lower and upper bounds determine

legal values for the float default, which may be unbounded, bounded

between a lower and an upper value, strictly less than zero, less than or

equal to zero, strictly greater than zero, or greater than or equal to zero.

XVF_FLOAT_LOWER This attribute is used to specify the lower bound of the legal values for

a bounded Float selection. It is used in conjunction with the upper

bound to specify a float that is unbounded, strictly less than zero, less

than or equal to zero, strictly greater than zero, or greater than or equal

to zero. The following rules apply:

Lower = Upper = -2.0 { leg al values < 0.0 }

Lower = Upper = -1.0 { leg al values <= 0.0 }

Lower = Upper = 1.0 { legal values >= 0.0 }

Lower = Upper = 2.0 { legal values > 0.0 }

Lower = Upper = X { no range checking }

Lower = X; Upper = Y { X <= leg al value <= Y }

XVF_FLOAT_PREC The FloatPrecision attribute specifies the number of decimal places that

are presented to the user with the Float selection. If the FloatPrecision

value is zero, the float value will be presented to the user with the for-

mat "%g"; ie, trailing zeroes are removed from the result, and a decimal

point will appear only if it is followed by a digit. If the FloatPrecision

value is greater than zero, the float value will be presented with that

number of significant digits. The maximum number of significant dig-

its for a float selection is 7.

8-44

Xvforms Program Services Volume III - Chapter 8

Descriptions of Attributes For Float Selections

Attribute Description

XVF_FLOAT_UPPER This attribute is used to specify the upper bound of the legal values for

a bounded Float selection. It is used in conjunction with the Lower

bound to specify a float that is unbounded, strictly less than zero, less

than or equal to zero, strictly greater than zero, or greater than or equal

to zero. The following rules apply:

Lower = Upper = -2.0 { leg al values < 0.0 }

Lower = Upper = -1.0 { leg al values <= 0.0 }

Lower = Upper = 1.0 { legal values >= 0.0 }

Lower = Upper = 2.0 { legal values > 0.0 }

Lower = Upper = X { no range checking }

Lower = X; Upper = Y { X <= leg al value <= Y }

XVF_FLOAT_VAL The FloatValue attribute specifies the current value of a Float selection.

The values of the lower and upper bounds determine legal values for

the float value, which may be unbounded, bounded between a lower

and an upper value, strictly less than zero, less than or equal to zero,

strictly greater than zero, or greater than or equal to zero.

XVF_MECHANISM The Mechanism attribute is used to specify whether or not a scrollbar

will be used with integers, floats, or doubles that are strictly bound (ie,

the lower bound is not equal to the upper bound). When integers,

floats, or doubles are strictly bound and the width is sufficient, a scroll

bar will appear to the right of the parameter box, allowing the user to

set the value with the scroll bar. To turn off the scrollbar, provide a

value of 0; to enable the scrollbar, provide a value of 1. In the future,

specifying a 2 may indicate the preference for an alternate mechanism

to be used for this purpose, such as a dial.

Summary of Attributes For Float Selections

Attribute Type GUI Legal
Items Values

XVF_FLOAT_DEF float Floats Any float value, within bounds specified

by XVF_FLOAT_LOWER and

XVF_FLOAT_UPPER

XVF_FLOAT_LOWER float Floats lower < XVF_FLOAT_UPPER

XVF_FLOAT_PREC float Floats 0 <= precision <= 7

XVF_FLOAT_UPPER float Floats upper > XVF_FLOAT_LOWER

XVF_FLOAT_VAL float Floats Any float value, within bounds specified

by XVF_FLOAT_LOWER and

XVF_FLOAT_UPPER

XVF_MECHANISM int Integers

Floats

Doubles

0 or 1

8-45

Xvforms Program Services Volume III - Chapter 8

E.7. Attributes of Doubles

The following is a listing of GUI item attributes that only apply to Double selections.

Descriptions of Attributes For Double Selections

Attribute Description

XVF_DOUBLE_DEF The DoubleDefault attribute specifies a default value to be used with a

Double selection. The values of the lower and upper bounds determine

legal values for the double default, which may be unbounded, bounded

between a lower and an upper value, strictly less than zero, less than or

equal to zero, strictly greater than zero, or greater than or equal to zero.

XVF_DOUBLE_LOWER This attribute is used to specify the lower bound of the legal values for

a bounded Double selection. It is used in conjunction with the upper

bound to specify a double that is unbounded, strictly less than zero, less

than or equal to zero, strictly greater than zero, or greater than or equal

to zero. The following rules apply:

Lower = Upper = -2.0 { leg al values < 0.0 }

Lower = Upper = -1.0 { leg al values <= 0.0 }

Lower = Upper = 1.0 { legal values >= 0.0 }

Lower = Upper = 2.0 { legal values > 0.0 }

Lower = Upper = X { no range checking }

Lower = X; Upper = Y { X <= leg al value <= Y }

XVF_DOUBLE_PREC The DoublePrecision attribute specifies the number of decimal places

that are presented to the user with the Double selection. If the Double-

Precision value is zero, the double value will be presented to the user

with the format "%g"; ie, trailing zeroes are removed from the result,

and a decimal point will appear only if it is followed by a digit. If the

DoublePrecision value is greater than zero, the double value will be

presented with that number of significant digits. The maximum num-

ber of significant digits for a double selection is 14.

XVF_DOUBLE_UPPER This attribute is used to specify the upper bound of the legal values for

a bounded Double selection. It is used in conjunction with the lower

bound to specify a double that is unbounded, strictly less than zero, less

than or equal to zero, strictly greater than zero, or greater than or equal

to zero. The following rules apply:

Lower = Upper = -2.0 { leg al values < 0.0 }

Lower = Upper = -1.0 { leg al values <= 0.0 }

Lower = Upper = 1.0 { legal values >= 0.0 }

Lower = Upper = 2.0 { legal values > 0.0 }

Lower = Upper = X { no range checking }

Lower = X; Upper = Y { X <= leg al value <= Y }

XVF_DOUBLE_VAL The DoubleValue attribute specifies the current value of a Double selec-

tion. The values of the lower and upper bounds determine legal values

for the double value, which may be unbounded, bounded between a

lower and an upper value, strictly less than zero, less than or equal to

zero, strictly greater than zero, or greater than or equal to zero.

8-46

Xvforms Program Services Volume III - Chapter 8

Descriptions of Attributes For Double Selections

Attribute Description

XVF_MECHANISM The Mechanism attribute is used to specify whether or not a scrollbar

will be used with integers, floats, or doubles that are strictly bound (ie,

the lower bound is not equal to the upper bound). When integers,

floats, or doubles are strictly bound and the width is sufficient, a scroll

bar will appear to the right of the parameter box, allowing the user to

set the value with the scroll bar. To turn off the scrollbar, provide a

value of 0; to enable the scrollbar, provide a value of 1. In the future,

specifying a 2 may indicate the preference for an alternate mechanism

to be used for this purpose, such as a dial.

Summary of Attributes For Double Selections

Attribute Type GUI Legal
Items Values

XVF_DOUBLE_DEF double Doubles Any double value, within bounds specified

by XVF_DOUBLE_LOWER and XVF_DOU-

BLE_UPPER

XVF_DOUBLE_LOWER double Doubles lower < XVF_DOUBLE_UPPER

XVF_DOUBLE_PREC double Doubles 0 <= precision <= 10

XVF_DOUBLE_UPPER double Doubles upper > XVF_DOUBLE_LOWER

XVF_DOUBLE_VAL double Doubles Any double value, within bounds specified

by XVF_DOUBLE_LOWER and XVF_DOU-

BLE_UPPER

XVF_MECHANISM int Integers

Floats

Doubles

0 or 1

E.8. Attributes of Strings

The following is a listing of GUI item attributes that apply to String and StringList selections.

Descriptions of Attributes For String & StringList Selections

Attribute Description

XVF_STRING_DEF The StringDefault attribute specifies a default value to be used with a

String or StringList selection. The string may consist of any printable

ascii characters.

XVF_STRING_MULTILINE The StringMultiLine attribute specifies whether or not a string or

stringlist selection should have a text parameter box that is taller than 1

character height. If TRUE (1), the string or stringlist selection will be

allowed to be taller than a single character height.

8-47

Xvforms Program Services Volume III - Chapter 8

Descriptions of Attributes For String & StringList Selections

Attribute Description

XVF_STRING_VAL The StringValue attribute specifies the current value of a String or

StringList selection. The string may consist of any printable ascii char-

acters.

Summary of Attributes For String & StringList Selections

Attribute Type GUI Legal
Items Values

XVF_STRING_DEF char * Strings

StringLists

any string

XVF_STRING_MULTILINE int Strings

StringLists

TRUE/FALSE

XVF_STRING_VAL char * Strings

StringLists

any string

E.9. Attributes of Toggles

The following is a listing of GUI item attributes that apply to Toggle selections.

Descriptions of Attributes For Toggle Selections

Attribute Description

XVF_TOGGLE_NUM The ToggleNum attribute specifies the index (starting at 1) of the cur-

rently selected toggle member. For example, if the third member in the

toggle is selected, the toggle num will have a value of 3.

XVF_TOGGLE_SIZE The ToggleSize attribute specifies the number of members in the tog-

gle. At this point, it restricted to being a READ-ONLY attribute; ie, it

can only be used with xvf_get_attribute(s)(), and cannot be used to

change the size of the toggle during execution.

XVF_TOGGLE_TYPE This attribute specifies the data type of the toggle. Supported toggle

types include InputFiles, OutputFiles, Integers, Logicals, Flags, Floats,

and Strings. This is a READ-ONLY attribute; ie, it can only be used

with xvf_get_attribute(s)(), and cannot be used to change the data type

of a toggle during runtime.

8-48

Xvforms Program Services Volume III - Chapter 8

Descriptions of Attributes For Toggle Selections

Attribute Description

XVF_TOGGLE_VAL The ToggleVal attribute is the current value of the toggle. Since the

data type of the toggle may vary, the value is always stored in a string

buffer; to convert the string value to the proper data type, atoi() or

atof() may be used in the case of Flag, Logical, Integer, Float, and Dou-

ble toggles. For toggles of flags and logicals, the value returned will be

the number (in order of appearance) of the flag or logical toggle mem-

ber that is currently selected. Therefore, in a toggle of flags or logicals,

if the Nth member is selected, the toggle will take on a value of N. Note

that in the case of flag and logical toggles, the ToggleVal and Tog-

gleNum attributes are the same. For toggles of integers, floats, doubles,

strings, input files, and output files, the value returned will be the

default value specified for the currently selected toggle member. The

following examples illustrate the setting and getting of toggle values.

int ival;
float fval;
double dval;
char buffer[KLENGTH];

/* set value of flag, logical, or integer toggle */
ksprintf(buffer, "%d", ival);
xvf_set_attribute(kformstruct, XVF_TOGGLE_VAL,

buffer);

/* get value of flag, logical, or integer toggle */
xvf_get_attribute(kformstruct, XVF_TOGGLE_VAL,

&buffer);
ival = atoi(buffer);

/* set value of float toggle */
ksprintf(buffer, "%f", fval);
xvf_set_attribute(kformstruct, XVF_TOGGLE_VAL,

buffer);

/* get value of float toggle */
xvf_get_attribute(kformstruct, XVF_TOGGLE_VAL,

&buffer);
fval = (float) atof(buffer);

/* set value of double toggle */
ksprintf(buffer, "%g", dval);
xvf_set_attribute(kformstruct, XVF_TOGGLE_VAL,

buffer);

/* get value of double toggle */
xvf_get_attribute(kformstruct, XVF_TOGGLE_VAL,

&buffer);
dval = atof(buffer);

8-49

Xvforms Program Services Volume III - Chapter 8

Summary of Attributes For Toggle Selections

Attribute Type GUI Legal
Items Values

XVF_TOGGLE_NUM int Toggles 1 <= toggle_num <= XVF_TOGGLE_MEM-

BER_NUM

XVF_TOGGLE_SIZE int Toggles size > 1

XVF_TOGGLE_TYPE int Toggles KUIS_FLAG

KUIS_LOGICAL

KUIS_INTEGER

KUIS_FLOAT

KUIS_DOUBLE

KUIS_STRING

KUIS_INPUTFILE

KUIS_OUTPUTFILE

XVF_TOGGLE_VAL char * Toggles The current value of the toggle stored in a

string,

E.10. Attributes of Lists

The following is a listing of GUI item attributes that apply to List, DisplayList, and StringList selections.

Descriptions of Attributes For List Selections

Attribute Description

XVF_LIST_ADD This is a write-only attribute, ie, it can only be used with

xvf_set_attribute(s)(). The label provided will be added to the end of

the list: the new member will be assigned the next consecutive integer

value following the value of the list member that was previously at the

end of the list, and the size of the list incremented by 1. The list will be

automatically updated to display the new label.

XVF_LIST_CONTENTS This is the array of labels that is associated with each of the different

values of the list. IMPORTANT NOTE: You MUST set

XVF_LIST_SIZE to the number of elements in the list BEFORE setting

XVF_LIST_CONTENTS . Neglecting to set XVF_LIST_SIZE to the num-

ber of elements in the list will result in memory corruption.

XVF_LIST_DELETE This is a write-only attribute, ie, it can only be used with

xvf_set_attribute(s)(). The list will be searched for the label provided,

and that label will be deleted from the list, the size of the list decre-

mented by 1. The list will be automatically updated to display the list

without the deleted label. Because the integer values associated with

lists are always incremental, if an item in the middle of the list is

deleted, all items later in the list will have their values "scooted back"

by 1. If the label specified cannot be found, the list will remain unaf-

fected.

8-50

Xvforms Program Services Volume III - Chapter 8

Descriptions of Attributes For List Selections

Attribute Description

XVF_LIST_DELETEALL This is an action attribute, ie, it always takes a value of TRUE, and can

only be used with xvf_set_attribute(s)(). All items will be deleted from

the list, the size of the list will be set to 0. The list will be updated, and

displayed as empty.

XVF_LIST_INDEX This attribute is the index of the current value of the list. Suppose we

have a list with values ranging from 15 to 24; that is, there are 10

items in the list, and the ListStart attribute is set to 10. We may have an

array of strings defining the choices that correspond to the values 15 to

24, but if so, the indices into that array will be 0 to 9. This attribute

stores the appropriate index. This value can also be determined using

the equation:

list_index = list_value - list_start

XVF_LIST_LABEL This attribute is the label which corresponds to the current value of the

list. Suppose we have a pull-down list with values ranging from 10 to

12, with associated labels "discrete", "bargraph", and "polymarker". If

the current value of the list was 12, then the corresponding label will be

"polymarker".

XVF_LIST_SIZE This attribute specifies the number of items in the list. Note that this

attribute MUST be set correctly before the contents of the list may be

set or retrieved.

XVF_LIST_START This attribute allows the incremental values of the list to begin at any

integer. We may have a list with 10 items, but if the values of the list

are to range from 15 to 24, the list start attribute will have a value of 15.

NOTE: StringList selections do not have the ListStart attribute; the list

start for a StringList selection is always 1.

XVF_LIST_VAL This attribute is the integer value represented by the currently selected

item from the list. Suppose we have a list with values ranging from 15

to 24, and the fifth item is selected; in this case, the integer value 19

will be the list value.

Summary of Attributes For List Selections

Attribute Type GUI Legal
Items Values

XVF_LIST_ADD char * Lists

DisplayLists

StringLists

any string to add as new list member

XVF_LIST_CONTENTS char ** Lists

DisplayLists

StringLists

array of strings to establish as list mem-

bers

XVF_LIST_DELETE char * Lists

DisplayLists

StringLists

string representing list member to delete

8-51

Xvforms Program Services Volume III - Chapter 8

Summary of Attributes For List Selections

Attribute Type GUI Legal
Items Values

XVF_LIST_DELETEALL int Lists

DisplayLists

StringLists

TRUE (action attribute)

XVF_LIST_INDEX int Lists

DisplayLists

StringLists

XVF_LIST_START <= index <

XVF_LIST_NUM+ XVF_LIST_START

XVF_LIST_LABEL char * Lists

DisplayLists

StringLists

any string

XVF_LIST_SIZE int Lists

DisplayLists

StringLists

size >= 0

XVF_LIST_START int Lists

DisplayLists

any integer value

XVF_LIST_VAL int Lists

DisplayLists

StringLists

XVF_LIST_START < val <=

XVF_LIST_START+ XVF_LIST_NUM

E.11. Attributes of Cycles

The following is a listing of GUI item attributes that apply to Cycle selections.

Descriptions of Attributes For Cycle Selections

Attribute Description

XVF_CYCLE_ADD This is a write-only attribute, ie, it can only be used with

xvf_set_attribute(s)(). The label provided will be added to the end of

the cycle: the new member will be assigned the next consecutive inte-

ger value following the value of the cycle member that was previously

at the end of the cycle, and the size of the cycle incremented by 1.

XVF_CYCLE_CONTENTS This is the array of labels that is associated with each of the different

values of the cycle. IMPORTANT NOTE: You MUST set

XVF_CYCLE_SIZE to the number of elements in the cycle BEFORE set-

ting XVF_CYCLE_CONTENTS . Neglecting to set XVF_CYCLE_SIZE to

the number of elements in the cycle will result in memory corruption.

8-52

Xvforms Program Services Volume III - Chapter 8

Descriptions of Attributes For Cycle Selections

Attribute Description

XVF_CYCLE_DELETE This is a write-only attribute, ie, it can only be used with

xvf_set_attribute(s)(). The cycle will be searched for the label pro-

vided, and that label will be deleted from the cycle, the size of the cycle

decremented by 1. The cycle will be automatically updated to display

the cycle without the deleted label. Because the integer values associ-

ated with cycles are always incremental, if an item in the middle of the

cycle is deleted, all items later in the cycle will have their values

"scooted back" by 1. If the label specified cannot be found, the cycle

will remain unaffected.

XVF_CYCLE_DELETEALL This is an action attribute, ie, it always takes a value of TRUE, and can

only be used with xvf_set_attribute(s)(). All items will be deleted from

the cycle, the size of the cycle will be set to 0. The cycle will be

updated, and displayed as empty.

XVF_CYCLE_INDEX This attribute is the index of the current value of the cycle. Suppose

we have a cycle with values ranging from 10 to 14; that is, there are 5

items in the cycle, and the CycleStart attribute is set to 10. We may

have an array of strings defining the choices that correspond to the val-

ues 10 to 14, but the indices into that array will be 0 to 4. This attribute

stores the appropriate index. This value can also be determined using

the equation:

cycle_index = cycle_value - cycle_start

XVF_CYCLE_LABEL This attribute is the label which corresponds to the current value of the

cycle. Suppose we have a pull-down cycle with values ranging from

100 to 102, with associated labels "vegetation", "industrial", and

"water". If the current value of the cycle was 102, then the correspond-

ing label will be "water".

XVF_CYCLE_SIZE This attribute specifies the number of items in the cycle. Note that this

attribute MUST be set correctly before the contents of the cycle may be

set or retrieved.

XVF_CYCLE_START This attribute allows the incremental values of the cycle to begin at any

integer. We may have a cycle with 10 items, but if the values of the

cycle are to range from 25 to 34, the cycle start attribute will have a

value of 25.

XVF_CYCLE_VAL This attribute is the integer value represented by the currently selected

item from the cycle. Suppose we have a cycle with values ranging

from 15 to 24, and the fifth item is selected; in this case, the integer

value 19 will be the cycle value.

Summary of Attributes For Cycle Selections

Attribute Type GUI Legal
Items Values

XVF_CYCLE_ADD char * Cycles any string to add as new cycle member

8-53

Xvforms Program Services Volume III - Chapter 8

Summary of Attributes For Cycle Selections

Attribute Type GUI Legal
Items Values

XVF_CYCLE_CONTENTS char ** Cycles array of strings to establish as cycle mem-

bers

XVF_CYCLE_DELETE char * Cycles string representing cycle member to delete

XVF_CYCLE_DELETEALL int Cycles TRUE (action attribute)

XVF_CYCLE_INDEX int Cycles XVF_CYCLE_START <= index <

XVF_CYCLE_NUM+ XVF_CYCLE_START

XVF_CYCLE_LABEL char * Cycles any string

XVF_CYCLE_SIZE int Cycles size >= 0

XVF_CYCLE_START int Cycles any integer value

XVF_CYCLE_VAL int Cycles XVF_CYCLE_START < val <=

XVF_CYCLE_START+ XVF_CYCLE_NUM

E.12. Attributes of Routine Buttons And Help Buttons

The following is a listing of GUI item attributes that only apply to Routine buttons and Help buttons.

Descriptions of Attributes For Miscellaneous Selections

Attribute Description

XVF_HELPPATH This path may be the path to a specific help file to be displayed when

the user clicks on the help button, or it may be the path to a directory in

which two or more help files are contained. If the help path accesses a

particular file, the help object will come up with that file displayed in it.

If it accesses a directory, the help object that comes up will have an

"Options" button which produces a pulldown menu at the upper left

hand corner. There will be one entry in the pulldown menu for each file

in the directory. When the user selects an item from the menu, the file

that it names will be displayed. NOTE: if a directory is specified as the

help path, it is important to make sure that no extraneous files exist in

that directory, as the help object will create an item in the pulldown

menu with the name of each file in the directory, and allow the user to

access every file in the directory. NOTE: if the help path specified is

invalid, the user will receive an error message when they click on the

help button.

XVF_ROUTINE This is the program that will be executed when the user clicks on the

Routine button. It should be specified using the name of the toolbox

bin in which the program binary is located and the name of the binary

itself, using the syntax ${TOOLBOXNAME}BIN/{binary name}. For

example, the kar ith1 program of the $DAT AMANIP toolbox has its

Routine attribute specified as $DAT AMANIPBIN/karith1.

8-54

Xvforms Program Services Volume III - Chapter 8

Summary of Attributes For Miscellaneous Selections

Attribute Type GUI Legal
Items Values

XVF_HELPPATH char * Help buttons valid path to help page

XVF_ROUTINE char * Routine buttons name of program to execute

E.13. Attributes for Subform And Pane Display

The following is a listing of GUI item attributes that are used for changing the subform and/or pane that is
currently displayed.

Descriptions of Attributes For Subform & Pane Display

Attribute Description

XVF_DISPLAY_PANE This attribute allows you to select or unselect a particular pane of a sub-

form; it is only applicable when multiple panes exist on the subform.

This is a write-only attribute; that is, it can only be used with

xvf_set_attribute(s)(). Provide a value of TRUE (1) to select the speci-

fied pane, a value of FALSE (0) to unselect the specified pane.

Requests to select panes that are already selected and requests to unse-

lect panes that are not currently selected will have no effect.

XVF_DISPLAY_SUBFORM This attribute allows you to unmap the currently displayed subform, or

to to display or a currently unmapped subform. Accordingly, this

attribute is only applicable to GUI’s having master forms with multiple

subforms. It is a write-only attribute; that is, it can only be used with

xvf_set_attribute(s)(). Provide a value of TRUE (1) to map the desired

subform, a value of FALSE (0) to unmap the desired subform.

Requests to map subforms that are already mapped and requests to

unmap subforms that are already unmapped will have no effect. If a

master form has subforms that are MutuallyExclusive, such that only

one subform may be mapped at any one time, a request to map a sub-

form will cause the currently mapped subform to be popped down.

Summary of Attributes For Subform & Pane Display

Attribute Type GUI Legal
Items Values

XVF_DISPLAY_PANE int Panes TRUE/FALSE

XVF_DISPLAY_SUBFORM int Subforms TRUE/FALSE

8-55

Xvforms Program Services Volume III - Chapter 8

E.14. Attributes for Printing UIS files

The following is a listing of GUI item attributes that are used for printing UIS files.

Descriptions of Attributes For Printing UIS’s

Attribute Description

XVF_PRINT_PANE This is a write-only attribute; that is, it can only be used with

xvf_set_attribute(s)(). It causes the UIS file describing only the speci-

fied pane to be written out to the filename specified. If any changes

have been made to the pane by the user via the menuforms, or any

changes have been made to the pane by the application program via

calls to xvf_set_attribute(s)(), those changes will be reflected in the

resulting UIS file.

XVF_PRINT_SUBFORM This is a write-only attribute; that is, it can only be used with

xvf_set_attribute(s)(). It causes the UIS file describing only the speci-

fied subform to be written out to the filename specified. If any changes

have been made to the subform by the user via the menuforms, or any

changes have been made to the subform by the application program via

calls to xvf_set_attribute(s)(), those changes will be reflected in the

resulting UIS file.

XVF_PRINT_UIS This is a write-only attribute; that is, it can only be used with

xvf_set_attribute(s)(). It causes the UIS file describing the entire GUI

exactly as it is displayed to be written out to the filename specified. If

any changes have been made to the GUI by the user via the menuforms,

or any changes have been made to the GUI by the application program

via calls to xvf_set_attribute(s)(), those changes will be reflected in the

resulting UIS file.

Summary of Attributes For Printing UIS’s

Attribute Type GUI Legal
Items Values

XVF_PRINT_PANE char * Panes Name of file to which to print UIS

describing pane

XVF_PRINT_SUBFORM char * Subforms Name of file to which to print UIS

describing subform

XVF_PRINT_UIS char * Forms Name of file to which to print UIS

describing entire GUI

E.15. xvf_get_xvobject() — return desired xvobject component of kformstruct

Synopsis
xvobject xvf_get_xvobject(

kform_struct *kformstruct,
int item_part,

8-56

Xvforms Program Services Volume III - Chapter 8

int create)

Input Arguments
kformstruct

Pointer to the generic structure representing the GUI item’s node in the form tree; appropriate candi-
dates are automatically generated in "form_info.h" by conductor.

item_part
Indicates the part of the gui desired.

create
the xvobject in question may not have been created yet (ie, if a subform or a pane has not been mapped
yet). Passing FALSE indicates that NULL should be returned for the xvobject if it has not yet been
created; passing TRUE specifies that the object should be created and then returned.

Returns
The xvobject associated with the kformstruct on success. If ’create’ is TRUE, NULL is returned only
on failure; If ’create’ is FALSE, NULL is returned when the xvobject has not yet been created.

Description
Given a pointer to a kformstruct, and an "item_part" indicator, returns the desired xvobject associated
with the selection represented by the kformstruct, so that the application may make changes to its GUI
items using xvw_set_attributes() which may not be supported by xvf_set_attributes().

NOTE: Please see xvf_set_attributes() before using this more difficult method of implementing GUI
changes.

Depending on the type of GUI item, it may be made up of one or many xvobjects. For example, an
action button consists only of a button GUI object. A Float selection, however, will have at least a
backplane, a label object, and a text object. If it is optional, it will also have a small button object that
serves as the optional box; if it is "live", it will have a pixmap object to display the stylized <cr> sign,
and it may also contain a scrollbar object. The "item_part" argument is used to specify which part of
the GUI item is desired.

For example, when passed a kformstruct associated with an Action Button and an "item_part" of
XVF_BUTTON_OBJ, xvf_get_xvobject() will return the xvobject which is the GUI button object.
When passed a kformstruct associated with an InputFile selection, and an "item_part" of XVF_BACK-
PLANE, xvf_get_xvobject() will return the xvobject which serves as the backplane for the InputFile
selection. If an "item_part" is requested which does not exist in the GUI item represented by the
kformstruct, an error message will be printed and NULL will be returned.

Legal Item Parts Include:

XVF_BACKPLANE : The backplane of the GUI item.
XVF_OPT_OBJ : The optional box of a GUI item (optional selection only).
XVF_BUTTON_OBJ : The button on a GUI item (GUI buttons, cycles, lists, etc)
XVF_LABEL_OBJ : The label on a GUI item

8-57

Xvforms Program Services Volume III - Chapter 8

XVF_TEXT_OBJ : The text box of a GUI selection
XVF_SCROLL_OBJ : Scrollbar of a Float, Integer, or Double selection
XVF_PIXMAP_OBJ : Stylized <cr> pixmap of a "live" selection

This function allows the application to obtain the actual GUI objects from which GUI items are constructed.
By setting attributes directly on the xvobjects themselves, the application may make certain changes to the
physical appearance of its GUI during runtime, where those changes are not already supported by
xvf_set_attribute(s)(). IMPORTANT NOTE: Please see the documentation on xvf_set_attribute(s)() first,
before attempting to make changes directly to the GUI objects that comprise GUI items.

Changing the border width of one of the GUI objects that make up the GUI item.

Controlling the colors and/or fonts of used by GUI items from within the application.

For these and other reasons, the application programmer may want to call xvf_get_xvobject() in order to obtain
one or more of the GUI objects that make up a GUI item. Then, xvw_set_attribute(s)() may be used directly
on the GUI object to set attributes of the GUI object, and thus force them to appear differently than the xvforms
library would otherwise display them.

All candidates for the kformstruct first parameter to xvf_get_xvobject() are defined for you by the xvroutine
code generator as elements of the GUI Information structure which is generated in "form_info.h" (please see
Chapter 4 of the VisiQuest 2001 Toolbox Programmer’s Manual for more details). Pass the field in the GUI
Information structure named "var_struct" where var is the variable name you provided on the UIS line that
defines the GUI item for which you wish to obtain the xvobject building block(s).

Item Part Item Part Description Valid GUI Items

XVF_BACKPLANE The backplane of a GUI item Any GUI item. GUI items that are made up only of buttons (ie,

Action Buttons, Routine Buttons, Quit Buttons, Help Buttons, etc)

will return the GUI button object as the "backplane."

XVF_OPT_OBJ The optional box of a GUI

selection.

Optional selections ONLY, where selections may be of type Input-

File, OutputFile, Integer, Float, Double, String, Logical, Cycle, List,

StringList, or Toggle.

XVF_LABEL_OBJ The label object of a GUI

item.

All GUI items that have a separate label GUI object; all GUI items

except Action Buttons, Help Buttons, Quit Buttons, Routine Buttons,

Guide Buttons, and Subform Buttons.

XVF_BUTTON_OBJ The button object of a GUI

item.

All GUI items that are made up of a single GUI button object, or con-

tain a separate button GUI object. The former include Action But-

tons, Help Buttons, Quit Buttons, Routine Buttons, Guide Buttons,

and Subform Buttons (note that passing XVF_BACKPLANE for

these will achieve the same purpose); the latter include Cycle, List,

Logical, and StringList selections.

XVF_TEXT_OBJ The text object of a GUI

item.

Only GUI selections which contain text GUI objects, which include:

InputFile, OutputFile, Integer, Float, Double, String, and StringList.

8-58

Xvforms Program Services Volume III - Chapter 8

F. Adding Extra Calls To GUI Items

F.1. xvf_add_extra_call() — add extra callback to GUI item

Synopsis
int xvf_add_extra_call(

kform_struct *kformstruct,
void (*routine)(kaddr),
kaddr client_data,
int call_location)

Input Arguments
kformstruct

kform_struct associated with the GUI item, to which the extra call is to be added. Note that all candi-
dates for this argument will be found in the GUI Information structure, which is automatically gener-
ated in the "form_info.h" file.

routine
The extra routine to call. This routine MUST be declared as follows:

void routine(
kaddr client_data)

client_data
Client data with which to call extra routine. The client_data pointer is used when it is necessary to
pass arguments to a callback routine. First, define a single structure containing all the parameters
needed. Declare a pointer to the structure, dynamically allocate the pointer, and initialize all the fields
with the values that you would have giv en to the parameters before passing them to the routine in a
normal call. Pass the pointer to your allocated, initialized structure to xvf_add_extra_call() as the
client_data. Inside the callback, cast the client_data to the appropriate structure type, as in:

my_struct *my_ptr = (my_struct *) client_data;

At that point, the fields may be accessed as desired. They will hold the values to which they were ini-
tialized.

call_location
tells whether the specified routine should be called before the "normal" operation of the item is per-
formed, after the "normal" operation of the item is performed, or instead of the "normal" operation of
the item.

One of: XVF_CALL_FIRST, XVF_CALL_LAST, or XVF_CALL_SUBSTITUTE

8-59

Xvforms Program Services Volume III - Chapter 8

Returns
TRUE on success, FALSE on failure

Description
Some items on the VisiQuest GUI perform a particular function automatically, without ever returning
flow control to the application program; they cannot be made "live" in order to force a return of flow
control to the application. These items include:

(1) subform buttons, which map a subform
(2) guide buttons, which map a pane
(3) quit buttons, which close the subform or exit the program
(4) help buttons, which put up a help page

With these items, a mechanism is sometimes desired which

will allow the programmer to call a particular routine when these items are used. For example, the pro-
grammer may want a certain routine to be called before a subform is mapped, after a pane is mapped,
before the GUI is destroyed, or before a help page is displayed. For situations like this,
xvf_add_extra_call() may be used to specify an additional routine that will be called by the built-in
callback for the GUI item in question. xvf_add_extra_call() may be called more than once, if calls to
more than one extra routine are needed.

Restrictions
Selection types other than buttons (ie, input files, output files, integers, floats, doubles, cycles, logicals,
strings, stringlists, displaylists, etc.) may only have extra callbacks added with XVF_CALL_LAST.

F.2. xvf_remove_extra_call() — remove function call from GUI item

Synopsis
int xvf_remove_extra_call(

kform_struct *kformstruct,
void (*routine)(kaddr),
kaddr client_data)

Input Arguments
kformstruct

kform_struct associated with the GUI item, from which the extra call is to be removed (passed to
xvf_add_extra_call earlier).

routine
The extra routine that was being called (passed to xvf_add_extra_call earlier).

client_data
Client data with which routine was called (passed to xvf_add_extra_call earlier).

8-60

Xvforms Program Services Volume III - Chapter 8

Returns
TRUE on success, FALSE on failure

Description
Removes an extra call from a subform button, guide button, quit button, help button, answer infile
selection, or answer outfile selection, where the extra call was added earlier with xvf_add_extra_call().

Restrictions
This routine should only be used for extra calls that were added earlier with a call to
xvf_add_extra_call.

G. Adding Callbacks To GUI Attributes

G.1. xvf_add_gui_callback() — add callback to a GUI item

Synopsis
int xvf_add_gui_callback(

kform_struct *kformstruct,
char *attribute,
void (*routine)(kform_struct *, char *, kaddr, kaddr),
kaddr client_data)

Input Arguments
kformstruct

kform_struct associated with the GUI item, to which the callback is to be added. Note that all candi-
dates for this argument will be found in the GUI Information structure, which is automatically gener-
ated in the "form_info.h" file.

attribute
the xvforms attribute on which to fire the callback. For all GUI item attribute changes, provide,
"xvf_all_attributes".

routine
The callback routine to fire. This routine MUST be declared as follows:

void routine(kform_struct kformstuct,
char *attribute,
kaddr attr_value,
kaddr client_data)

8-61

Xvforms Program Services Volume III - Chapter 8

client_data
Client data with which to call extra routine. The client_data pointer is used when it is necessary to
pass arguments to a callback routine. First, define a single structure containing all the parameters
needed. Declare a pointer to the structure, dynamically allocate the pointer, and initialize all the fields
with the values that you would have giv en to the parameters before passing them to the routine in a
normal call. Pass the pointer to your allocated, initialized structure to xvf_add_extra_call() as the
client_data. Inside the callback, cast the client_data to the appropriate structure type, as in:

my_struct *my_ptr = (my_struct *) client_data;

At that point, the fields may be accessed as desired. They will hold the values to which they were ini-
tialized.

Returns
TRUE on success, FALSE on failure

Description
This function adds a callback to a GUI item that will be called if an attribute of the GUI item itself is
changed.

G.2. xvf_remove_gui_callback() — remove callback from GUI item

Synopsis
int xvf_remove_gui_callback(

kform_struct *kformstruct,
char *attribute,
void (*routine)(kform_struct *, char *, kaddr, kaddr),
kaddr client_data)

Input Arguments
kformstruct

kform_struct associated with the GUI item, from which the callback is to be removed (passed to
xvf_add_gui_callback earlier).

attribute
the xvforms attribute on which the callback was fired. For all GUI item attribute changes, provide,
"xvf_all_attributes".

routine
The extra routine that was being called (passed to xvf_add_gui_callback earlier).

client_data
Client data with which routine was called (passed to xvf_add_gui_callback earlier).

Returns
TRUE on success, FALSE on failure

8-62

Xvforms Program Services Volume III - Chapter 8

Description
This function removes a callback from a GUI item that was being called when an attribute of the GUI
item was changed.

Restrictions
This routine should only be used for callbacks that were added earlier to GUI items with a call to
xvf_add_gui_callback.

8-63

Xvforms Program Services Volume III - Chapter 8

This page left intentionally blank

8-64

Table of Contents

A. Introduction . 8-1
A.1. Available GUI Items . 8-1

A.1.1. The Form . 8-2
A.1.2. The Subform . 8-2
A.1.3. The Pane . 8-2
A.1.4. The Master Form . 8-3
A.1.5. The Guide Pane . 8-3
A.1.6. Subform Buttons . 8-4
A.1.7. Guide Buttons . 8-5
A.1.8. Action Buttons . 8-5
A.1.9. Help Buttons . 8-6
A.1.10. Quit Buttons . 8-7
A.1.11. InputFile Selections . 8-7
A.1.12. OutputFile Selections . 8-8
A.1.13. Integer Selections . 8-8
A.1.14. Float Selections . 8-9
A.1.15. Double Selections . 8-10
A.1.16. String Selections . 8-10
A.1.17. Flag Selections . 8-11
A.1.18. Logical Selections . 8-12
A.1.19. Cycle Selections . 8-12
A.1.20. List Selections . 8-13
A.1.21. DisplayList Selections . 8-14
A.1.22. StringList Selections . 8-15
A.1.23. Blank Selections (Labels) . 8-16
A.1.24. Routine Buttons . 8-16
A.1.25. Stdin And Stdout Selections . 8-17
A.1.26. Submenus . 8-18
A.1.27. Workspaces . 8-19

B. About Public xvforms Library Calls . 8-19
C. Routines for Form Creation, Display, Etc 8-22

C.1. xvf_create_form() — create and map GUI of xvroutine 8-22
C.2. xvf_run_form() — run the GUI of an xvroutine 8-23
C.3. xvf_destroy_form() — destroy GUI of xvroutine & free associated memory 8-23
C.4. xvf_clear_selections() — reset GUI items of xvroutine 8-24

D. Setting & Getting GUI Item Attributes . 8-24
D.1. xvf_set_attribute() — set a single attribute of a GUI item 8-26
D.2. xvf_get_attribute() — get a single attribute of a GUI item 8-26
D.3. xvf_set_attributes() — set multiple attributes of a GUI item 8-27
D.4. xvf_get_attributes() — get multiple attributes of a GUI item 8-28

E. GUI Item Resource Set . 8-28
E.1. Complete GUI Item Resource Listing 8-28
E.2. General GUI Item Attributes . 8-30
E.3. Attributes of InputFiles and OutputFiles 8-41
E.4. Attributes of Logicals . 8-42
E.5. Attributes of Integers . 8-42
E.6. Attributes of Floats . 8-44

- i -

Xvforms Program Services Volume III - Chapter 8

E.7. Attributes of Doubles . 8-46
E.8. Attributes of Strings . 8-47
E.9. Attributes of Toggles . 8-48
E.10. Attributes of Lists . 8-50
E.11. Attributes of Cycles . 8-52
E.12. Attributes of Routine Buttons And Help Buttons 8-54
E.13. Attributes for Subform And Pane Display 8-55
E.14. Attributes for Printing UIS files . 8-56
E.15. xvf_get_xvobject() — return desired xvobject component of kformstruct 8-56

F. Adding Extra Calls To GUI Items . 8-59
F.1. xvf_add_extra_call() — add extra callback to GUI item 8-59
F.2. xvf_remove_extra_call() — remove function call from GUI item 8-60

G. Adding Callbacks To GUI Attributes . 8-61
G.1. xvf_add_gui_callback() — add callback to a GUI item 8-61
G.2. xvf_remove_gui_callback() — remove callback from GUI item 8-62

- ii -

Program Services Volume III

Chapter 9

Xvutils

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 9 - Xvutils

A. Introduction

The xvutils library contains utility functions that are used to augment the Graphical User Interface (GUI) cre-
ated with the xvforms library. These utilities generally involve pop-up I/O display objects, such as file
browsers, list objects, pop-up error messages, and text display objects.

B. Errors, Warnings, Prompts, and Information Display

The most commonly-used utilities in the xvutils library are not called directly from the application. Direct
calls to these routines violate the VisiQuest 2001 programming standard. They are included here in Chapter 7,
xvutils Library to emphasize the fact that standardized error reporting, warning messages, choice prompts, and
information display are available for xvroutines and can be utilized. These routines are:

• xvu_choose_wait() - pop up a choose dialog box; wait for response
• xvu_error_wait() - pop up error object (1 button); wait for acknowledgement
• xvu_info_wait() - pop up info object (1 button); wait for acknowledgement
• xvu_multiprompt_wait() - pop up dialog containing prompt and acknowledgement buttons
• xvu_prompt_wait() - pop up prompting object (2 choices); wait for response
• xvu_quit_wait() - pop up a quit dialog box; wait for response
• xvu_save_wait() - pop up a save message; wait for response
• xvu_warn_wait() - pop up warn object (1 button); wait for acknowledgement

Instead of calling these xvutils routines from the application, it is recommended that xvroutines (like kroutines
and hybrids) make calls to the appropriate kutils information/error reporting facilities. In the same order as
their xvutils counterparts. These are:

• kerror() - print error messages in a standardized format
• kinfo() - print information messages in a standardized format
• kprompt() - request an acknowledgement from the user
• kchoose() - prompt the user to select from a list of items
• ksave() - request an acknowledgement for quitting an application
• kquit() - request an acknowledgement for quitting an application

When the display is open (i.e., GUI is displayed) these kutils routines call the appropriate xvutils utility; the
error message, warning message, choice prompt, info message, save message, or quit message pops-up on the
display and the application is blocked until the user provides a response.

However, if the display is not open, the kutils routines call their own default utilities, and the message and/or
prompt in question will correctly appear in the user’s tty. By contrast, if an application calls one of the xvutils
utilities directly and the routine call is encountered when the display is not open, the message will be dis-
played, but the user cannot be prompted for a response. In the case of warnings and choice prompts where
acknowledgement is necessary, this will cause inappropriate behavior on the part of the application.

9-1

Xvutils Program Services Volume III - Chapter 9

For those who want to cover the cases of both open and closed displays, the kutils routines are repeated here
(they are also listed under the chapter for kutils):

B.1. kerror() — print error messages in a standardized format

Synopsis
int kerror(

char *library,
char *routine,
char *format,
kvalist)

Input Arguments
library

name of library (NULL if not applicable)
routine

name of routine
format

grammatically correct, clear explanation of the error that occurred. This can be formatted like a printf
statement

Returns
TRUE if the error was successfully acknowledge, otherwise if the message was not acknowledged
FALSE is returned.

Description
kerror produces standardized error messages for VisiQuest library routines and applications. It should be
called in EVERY instance of error messaging by EVERY VisiQuest function, subroutine, or main pro-
gram. If library is NULL then the program name will be used as the source of the error.

B.2. kinfo() — print information messages in a standardized format

Synopsis
int kinfo(

int notify_type,
char *format,
kvalist)

Input Arguments
notify_type

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSE

9-2

Xvutils Program Services Volume III - Chapter 9

format
grammatically correct, clear explanation of the information. Note the message can be formatted like a
printf statement.

Returns
TRUE if the message was successfully printed, otherwise FALSE is returned.

Description
kinfo produces standardized information messages for VisiQuest library routines and VisiQuest applica-
tions. It should be called in EVERY instance of information messaging by EVERY VisiQuest function,
subroutine, or main program.

If the notify_type variable is set to KFORCE, then the prompt will always appear regardless of the set-
ting of the environment variable KHOROS_NOTIFY.

If the notify_type variable is set to KSTANDARD and the user has the environment variable
KHOROS_NOTIFY set to either STANDARD or VERBOSE the prompt will appear.

And finally, if the notify_type variable is set to KVERBOSE and the environment variable
KHOROS_NOTIFY set to VERBOSE, the prompt will appear.

Here is a summary table:

notify_type = FORCE always prompt, ignore the setting of
the environment variable KHOROS_NOTIFY

notify_type = STANDARD only prompt when the environment
variable KHOROS_NOTIFY is set to
STANDARD or VERBOSE.

notify_type = VERBOSE only prompt when the environment
variable KHOROS_NOTIFY is set to
VERBOSE

B.3. kprompt() — request an acknowledgement from the user

Synopsis
int kprompt(

int notify_type,

9-3

Xvutils Program Services Volume III - Chapter 9

char *yes_response,
char *no_response,
int default_val,
char *format,
kvalist)

Input Arguments
notify_type

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSSE
yes_response

name of "yes" response string ("Yes" if NULL)
no_response

name of "no" response string ("No" if NULL)
default_val

the default value to list when prompting
format

grammatically correct, clear explanation of the error that occurred. This can be formatted like a printf
statement.

Returns
TRUE if the prompt was successfully acknowledged, otherwise if the message was not acknowledged
FALSE is returned. In the event and error occurs the default value is returned.

Description
kprompt will call the specified prompt handler to request or demand an acknowledgement from the
user. This utility can operate in several different modes.

If the notify_type variable is set to KFORCE, then the prompt will always appear regardless of the set-
ting of the environment variable KHOROS_NOTIFY.

If the notify_type variable is set to KSTANDARD and the user has the environment variable
KHOROS_NOTIFY set to either STANDARD or VERBOSE the prompt will appear.

And finally, if the notify_type variable is set to KVERBOSE and the environment variable
KHOROS_NOTIFY set to VERBOSE, the prompt will appear.

Here is a summary table:

notify_type = FORCE always prompt, ignore the setting of
the environment variable KHOROS_NOTIFY

notify_type = STANDARD only prompt when the environment
variable KHOROS_NOTIFY is set to
STANDARD or VERBOSE.

notify_type = VERBOSE only prompt when the environment

9-4

Xvutils Program Services Volume III - Chapter 9

variable KHOROS_NOTIFY is set to
VERBOSE

B.4. kchoose() — prompt the user to select from a list of items

Synopsis
char *kchoose(

int notify_type,
char **list_of_options,
int num_options,
int default_index,
char *return_string,
int *return_index,
char *format,
kvalist)

Input Arguments
notify_type

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSSE
list_of_options

an array of strings containing the items to select from.
num_options

The number of items in the list_of_options.
default_index

The index number to the default item, must start at 1.
format

grammatically correct, clear explanation of the error that occurred. This can be formatted like a (void)
printf statement.

Output Arguments
return_string

string that holds the selected item. If it’s NULL, it kmallocs the space necessary, and returns the
string.

return_index
This is the index of the item selected.

Returns
return_string if it is not NULL, or a pointer to the resulting kmalloc’ed string if it is NULL. NULL is
returned upon error.

9-5

Xvutils Program Services Volume III - Chapter 9

Description
kchoose will call the specified choose handler to request the user to make a selection from a list of
items. This utility can operate in several different modes.

If the notify_type variable is set to KFORCE, then the prompt will always appear regardless of the set-
ting of the environment variable KHOROS_NOTIFY.

If the notify_type variable is set to KSTANDARD and the user has the environment variable
KHOROS_NOTIFY set to either KSTANDARD or KVERBOSE the prompt will appear.

And finally, if the notify_type variable is set to KVERBOSE and the environment variable
KHOROS_NOTIFY set to KVERBOSE, the prompt will appear.

Here is a summary table:

notify_type = FORCE always prompt, ignore the setting of
the environment variable KHOROS_NOTIFY

notify_type = STANDARD only prompt when the environment
variable KHOROS_NOTIFY is set to
STANDARD or VERBOSE.

notify_type = VERBOSE only prompt when the environment
variable KHOROS_NOTIFY is set to

B.5. ksave() — request an acknowledgement for quitting an application

Synopsis
int ksave(

int notify_type,
char *format,
kvalist)

Input Arguments
notify_type

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSE message - the
message prompting the user for exiting.

Returns
TRUE if the user wants to quit the application, otherwise if the user doesn’t want to quit then FALSE

9-6

Xvutils Program Services Volume III - Chapter 9

is returned. In the event of an error FALSE is returned.

Description
ksave will call the specified prompt handler to request or demand an acknowledgement from the user.
This utility will as the user if it is ok to overwrite the file in question, and can operate in several differ-
ent modes.

If the notify_type variable is set to KFORCE, then the prompt will always appear regardless of the set-
ting of the environment variable KHOROS_NOTIFY.

If the notify_type variable is set to KSTANDARD and the user has the environment variable
KHOROS_NOTIFY set to either STANDARD or VERBOSE the prompt will appear.

And finally, if the notify_type variable is set to KVERBOSE and the environment variable
KHOROS_NOTIFY set to VERBOSE, the prompt will appear.

Here is a summary table:

notify_type = FORCE never prompt when the environment
variable KHOROS_NOTIFY is set to
FORCE.

notify_type = STANDARD only prompt when the environment
variable KHOROS_NOTIFY is set to
STANDARD or VERBOSE.

notify_type = VERBOSE only prompt when the environment
variable KHOROS_NOTIFY is set to
VERBOSE

B.6. kquit() — request an acknowledgement for quitting an application

Synopsis
int kquit(

int notify_type,
char *format,
kvalist)

Input Arguments
notify_type

9-7

Xvutils Program Services Volume III - Chapter 9

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSE message - the
message prompting the user for exiting.

Returns
TRUE if the user wants to quit the application, otherwise if the user doesn’t want to quit then FALSE
is returned. In the event of an error FALSE is returned.

Description
kquit will call the specified prompt handler to request or demand an acknowledgement from the user.
This utility will as the user if it is ok to overwrite the file in question, and can operate in several differ-
ent modes.

If the notify_type variable is set to KFORCE, then the prompt will always appear regardless of the set-
ting of the environment variable KHOROS_NOTIFY.

If the notify_type variable is set to KSTANDARD and the user has the environment variable
KHOROS_NOTIFY set to either STANDARD or VERBOSE the prompt will appear.

And finally, if the notify_type variable is set to KVERBOSE and the environment variable
KHOROS_NOTIFY set to VERBOSE, the prompt will appear.

Here is a summary table:

notify_type = FORCE never prompt when the environment
variable KHOROS_NOTIFY is set to
FORCE.

notify_type = STANDARD only prompt when the environment
variable KHOROS_NOTIFY is set to
STANDARD or VERBOSE.

notify_type = VERBOSE only prompt when the environment
variable KHOROS_NOTIFY is set to
VERBOSE

For those uninterested in the closed display or don’t care to follow the VisiQuest 2001 programming standard,
their function definitions are as follows:

9-8

Xvutils Program Services Volume III - Chapter 9

B.7. xvu_choose_wait() — pop up a choose dialog box; wait for response

Synopsis
int xvu_choose_wait(

char *prompt,
char **item_labels,
int item_num,
int default_val,
int user_defined,
char **return_string)

Input Arguments
prompt

prompt to display at top of list object
item_labels

array of strings to be displayed as items in the list
item_num

size of the ’list’ array
default_val

number of the item in the list to return (starting at 1 for the first item) if the user clicks on "Cancel".
Specify default of - 1 if the default is to be NULL.

user_defined
flag indicating if a string object should be created at the bottom of the list object to allow the user to
enter a string that is not part of the list array. If user defined items are allowed, and the user specifies
their own list item, the number returned will be -1, indicating that the user’s choice was not a member
of the original list.

return_string
be sure to set this to NULL if you want the string allocated for you; be sure to allocate sufficient space
for the string otherwise!

Output Arguments
return_string

the string chosen from the list by the user

Returns
Value returned to caller will be: 1 if user selected item1 2 if user selected item2 3 if user selected item3
N if user selected itemN. 0 if there was an error creating selection object, or the user clicked on CAN-
CEL and no default value (ie, a default value of -1) was provided. -1 if the user_defined flag was
passed in as TRUE, and the user entered their own item to use.

This routine will NOT return to the calling program until one of the items is chosen from the list.

Description
Creates and maps a pop-up choose dialog box that consists of a list with N items, and looks like:

9-9

Xvutils Program Services Volume III - Chapter 9

| |
| Choose One: |
| |
- - - - - - - - - - - - - - - -
| item 1 |
| item 2 |
| item 3 |
| item 4 |
| : |
| item 5 |
- - - - - - - - - - - - - - - -
| ---------- |
| | Cancel | |

You may specify a prompt to replace "Choose 1". You may specify a label to replace "Cancel" on the
button.

If desired, you may specify the "user defined" option to be TRUE, which will cause a text object to be
created underneath the list. The user may then enter their own selection into the text object and hit
<Enter>, which will cause the new selection to appear in the list, where it may be chosen.

IMPORTANT NOTE: to be consistent with the standards of the VisiQuest Software development system,
you should really be calling kchoose(), not xvu_choose_wait().

B.8. xvu_error_wait() — pop up error object (1 button); wait for acknowledgement

Synopsis
int xvu_error_wait(

char *error_mesg,
char *error_label,
char *button_label)

Input Arguments
error_mesg

string describing error message
error_label

short label for top of error object; passing NULL will result in default of "Error".
button_label

label for acknowledgment button; passing NULL will result in default of "Ok".

9-10

Xvutils Program Services Volume III - Chapter 9

Returns
Returns FALSE if it failed to create the error object otherwise waits for user to acknowledge error mes-
sage,

Description
Creates a pop-up error object which must be acknowledged by the user before control is returned to the
application program.

IMPORTANT NOTE: to be consistent with the standards of the VisiQuest Software development system,
you should really be calling kerror(), not xvu_error_wait().

B.9. xvu_info_wait() — pop up info object (1 button); wait for acknowledgement

Synopsis
int xvu_info_wait(

char *info_mesg,
char *info_label,
char *button_label)

Input Arguments
info_mesg

string describing info message
info_label

short label for top of info object; passing NULL will result in default of "Information".
button_label

label for acknowledgment button; passing NULL will result in default of "Ok".

Returns
Returns FALSE if it failed to create the info object otherwise waits for user to acknowledge info mes-
sage,

Description
Creates a pop-up info object which must be acknowledged by the user before control is returned to the
application program.

IMPORTANT NOTE: to be consistent with the standards of the VisiQuest Software development system,
you should really be calling kinfo(), not xvu_info_wait().

9-11

Xvutils Program Services Volume III - Chapter 9

B.10. xvu_multiprompt_wait() — pop up dialog containing prompt and acknowledge-
ment buttons

Synopsis
int xvu_multiprompt_wait(

char *prompt,
char *pixmapfile,
int num,
char **labels,
int *values,
int def_action,
int num_across)

Input Arguments
prompt

string that will appear as the prompt at the top of the dialog

pixmapfile
if desired, the name of a pixmap to appear at the upper left hand corner may be specified; pass NULL
for no pixmap.

num
number of acknowledgement buttons desired

labels
string array of desired labels for the buttonn (array must be of size specified by ’num’). For example,
a string array containing the strings "Yes", "No" and "Cancel" would result in the popup dialog buttons
being labeled "Yes", "No", and "Cancel", in that order.

values
array of integers representing desired return values for the buttons (array must be of size specified by
’num’). In the example above, an array with values of [1,0,-1] would cause this routine to return 1 for
"Yes", 0 for "No", and -1 for "Cancel".

def_action
value of the button that will represent the default action. In the above example, if the default action
would be to Cancel, then this value would be passed in as -1, since the value specified for "Cancel" is
-1. When the dialog box pops up, it will be automatically positioned so that the pointer is over the
"Cancel" button. If the user uses the window manager to pop down the dialog, a return value of -1 will
be returned to the calling routine.

num_across
number of buttons desired in each row across the bottom of the dialog

Returns
depending on the button selected, returns the corresponding integer value specified for that button in

9-12

Xvutils Program Services Volume III - Chapter 9

the ’values’ array

Description
Creates and maps a generalized pop-up dialog object which looks like:

| |
| Please click on a button? |
| |
- - - - - - - - - - - - - - - - - -
| ----- ----- ----- ----- |
| | 1 | | 2 | | 3 | ... | N | |
----- ----- ----- -----

This routine will block input to the application until it is acknowledged by the user. The user must
click on one of the buttons before control will be returned to the application program; a return value
indicates which button was chosen by the user.

B.11. xvu_prompt_wait() — pop up prompting object (2 choices); wait for response

Synopsis
int xvu_prompt_wait(

char *prompt,
char *label,
char *yes_label,
char *no_label,
int default_val)

Input Arguments
prompt

prompting string
label

short label for top of prompting object; NULL will produce default of "Choose One".
yes_label

label for button representing value of 1 (TRUE); NULL will produce default of "Yes".
no_label

label for second representing value of 0 (FALSE); NULL will produce default of "No".
default_val

default value of 1 (TRUE) or 0 (FALSE)

9-13

Xvutils Program Services Volume III - Chapter 9

Returns
1 (TRUE) if user selected button with yes_label (Yes) 0 (FALSE) if user selected button with no_label
(No)

Description
Creates and maps a pop-up dialog object which has two buttons representing boolean values. The user
must click on one of the buttons; a status representing which of the two buttons was chosen will be
returned to the application. The user must click on one of the two buttons before control will be
returned to the application program.

B.12. xvu_quit_wait() — pop up a quit dialog box; wait for response

Synopsis
int xvu_quit_wait(

char *string,
char *quit_label,
char *cancel_label)

Input Arguments
string

Optional string for first line of label; if non-NULL, will replace "Please Confirm Exit\nExit program?"

quit_label
Optional label for button which returns value of 1; if non-NULL, will replace label of "Exit" on first
button

cancel_label
Optional label for button which returns value of 0; if non-NULL, will replace label of "Cancel" on first
button

Returns
1 if user selected "Exit" (first) button 0 if user selected "Cancel" (second) button

Description
Creates and maps a pop-up quit dialog box which looks like:

| |
| Please Confirm Exit |
| Exit program? |

9-14

Xvutils Program Services Volume III - Chapter 9

| |
- - - - - - - - - - - - - - - -

| -------- ---------- |
| | Exit | | Cancel | |
| -------- ---------- |

The quit dialog box will block input to the application until it is acknowledged by the user. The user
must click on "Exit" or "Cancel" before control will be returned to the application program.

B.13. xvu_save_wait() — pop up a save message; wait for response

Synopsis
int xvu_save_wait(

char *string,
char *filename,
char *save_label,
char *discard_label,
char *cancel_label)

Input Arguments
string

Optional string for first line of label; if non-NULL, will replace "Save Changes to"

filename
Name of file to which changes will be saved (subsequently, by the application).

save_label
Optional label for button which returns value of 2; if non-NULL, will replace label of "Save" on first
button

discard_label
Optional label for button which returns value of 1; if non-NULL, will replace label of "Discard" on
first button

cancel_label
Optional label for button which returns value of 0; if non-NULL, will replace label of "Cancel" on first
button

Returns
2 if user selected "Save" (first) button 1 if user selected "Discard" (second) 0 if user selected "Cancel"
(third) button

9-15

Xvutils Program Services Volume III - Chapter 9

Description
Creates and maps a pop-up save object which looks like:

| |
| Sav e Changes to {file}? |
| |
- - - - - - - - - - - - - - - - - -
| -------- ----------- ---------- |
| | Sav e | | Discard | | Cancel | |
-------- ----------- ----------

This routine will block input to the application until it is acknowledged by the user. The user must
click on "Save", "Discard" or "Cancel" before control will be returned to the application program.

Note that this utility does *not* actually save any changes to the file, or write to the file specified in
any way. It simply prompts the user and returns a status depending on which button the user clicked.

B.14. xvu_warn_wait() — pop up warn object (1 button); wait for acknowledgement

Synopsis
int xvu_warn_wait(

char *warn_mesg,
char *warn_label,
char *button_label)

Input Arguments
warn_mesg

string describing warn message
warn_label

short label for top of warn object; passing NULL will result in default of "Warning".
button_label

label for acknowledgment button; passing NULL will result in default of "Ok".

Returns
Returns FALSE if it failed to create the warn object otherwise waits for user to acknowledge warn
message,

Description
Creates a pop-up warn object which must be acknowledged by the user before control is returned to the
application program.

9-16

Xvutils Program Services Volume III - Chapter 9

IMPORTANT NOTE: to be consistent with the standards of the VisiQuest Software development system,
you should really be calling kwarn(), not xvu_warn_wait().

C. Browser, Online Help, Misc Prompting, Lists, and File Viewing

The following routines pop-up a compound GUI I/O object, and will block the application until the user
acknowledges them by selecting one of the buttons. These routines are as follows:

• xvu_browse_wait() - pop up the VisiQuest file/alias browser; wait for response
• xvu_help_wait() - display help file or help directory
• xvu_query_wait() - pop up prompt widget; wait for response
• xvu_run_list_multsel_wait() - display list, wait for multiple choices and acknowledgement

9-17

Xvutils Program Services Volume III - Chapter 9

C.1. xvu_browse_wait() — pop up the VisiQuest file/alias browser; wait for response

Synopsis
char *xvu_browse_wait(

char *directory)

Input Arguments
directory

path to initial directory

Returns
The string chosen from the browser by the user, or NULL if the user clicked on "Cancel".

Description
Causes the VisiQuest file / alias browser to pop up, and waits until the user selects a file or an alias before
returning their selection.

At the top of the browser is a button with which the user may control whether the browser operates on
files/directories or aliases. For more information on the Aliases capability, see Chapter 1 of the VisiQuest
User’s Manual.

The second element of the list is "../", which is used to move to an upper level directory. The remain-
ing elements of the browser list are the contents of the specified directory. The browser remains dis-
played until the user selects a file from the browser, or clicks on "Cancel".

The user may select a file from the browser list; when this happens, the full path to the file is returned
to the calling routine.

Alternatively, the user may select a sub-directory to change to that directory, or "../" to go up in the
directory structure.

A text object at the bottom of the browser allows the user to type their own filename, or change direc-
tories. If a directory path is typed into the bottom text object followed by a <return>, files in the
browser list will be updated with the contents of the new directory.

File/alias completion is supported; enter a few letters and use the Tab key to complete the entry.

C.2. xvu_help_wait() — display help file or help directory

9-18

Xvutils Program Services Volume III - Chapter 9

Synopsis
int xvu_help_wait(

char *path,
char *label,
int x,
int y,
int width,
int height,
int interpret_roff)

Input Arguments
path

the path of the (single) file to be displayed, or the directory containing the (multiple) files to be dis-
played in the help object. The path may include a ’˜’ if desired, or may contain a reference to $TOOL-
BOX.

label
short label for top of help object; NULL gives default of "Help".

x,
y

(X, Y) location for GUI autoplacement of help window; use (-1, -1) for user placement of help win-
dow

width
Width of window in pixels. If (-1) is specified, then a "good" size is provided automatically.

height
Height of window in pixels. If (-1) is specified, then a "good" size is provided automatically.

interpret_roff
Pass TRUE if files to be displayed will or may contain roff commands that will need to be formatted.
Pass FALSE if files are to be displayed verbetim with no formatting.

Returns
TRUE on success, FALSE on failure

Description
Create a large read-only text object in which one or more ascii files may be displayed.

If the path specified is to a single file, that file is displayed. If the path specified is a directory, the text
object will have one button at the top labeled with the name of each file in the directory. Clicking on
such a button will cause the contents of the file labeled to appear in the text object. In either case, the
on-line help object will be displayed until the user clicks on the "Quit" button. This utility will not
grab events from the application program.

9-19

Xvutils Program Services Volume III - Chapter 9

C.3. xvu_query_wait() — pop up prompt widget; wait for response

Synopsis
int xvu_query_wait(

char *top_label,
char *prompts[],
char *button,
char *answers[],
int num_prompts,
int size)

Input Arguments
top_label

label to appear at top of query object prompts[] - array of prompts
button

label for acknowledgement button; NULL will give default of "Ok" answers[] - array of strings in
which to return the user’s responses, one for each of the prompts. Default values may be provided
here if desired.

num_prompts
size of prompts[] and answers[] arrays

size
size (in characters) to make each text object for the users’ responses

Returns
1 if user selected "Ok" 0 if user selected "Cancel"

Description
Creates a pop-up query object in order to prompt more responses from the user; xvu_query_wait may
be used to obtain a set of strings, floats, integers, or responses of mixed types from the user.

Will not return control to application program until the user selects "Ok" or "Cancel".

The prompts[] and answers[] arrays must be of the same size, where that size is specified as
’num_prompts’.

The prompts[] array must be completely filled out with ’num_prompts’ strings giving appropriate
prompt for each response desired.

The answers[] array must be dynamically allocated, and each element of the string array should be ini-
tialized to contain the string representation of the default (if any). Strings should be passed in as
NULL if no default is appropriate). The defaults will appear in the text objects when the query object
is popped up; when the user clicks on "Ok", the contents of the answers[] array will be freed if non-
NULL, and the responses of the user will be substituted in their place.

When the caller is prompting for float, int, or other non-string responses, it is expected that the caller

9-20

Xvutils Program Services Volume III - Chapter 9

will convert the responses returned in the answers[] array to their appropriately typed counterparts
before use.

The ’size’ argument is provided to ensure that the text objects are physically large enough to accomo-
date the user’s response.

Side Effects
The strings in the answers[] array will be freed if non-NULL, and the responses of the user substituted.
If the user leaves the default in place, that will be returned; if the user blanks out a string, NULL is
returned.

C.4. xvu_run_list_multsel_wait() — display list, wait for multiple choices and acknowl-
edgement

Synopsis
xvw_list_struct **xvu_run_list_multsel_wait(

char *list[],
size_t size,
char *prompt,
char *label,
int user_defined,
int duplicates_ok,
int *num)

Input Arguments
list

array of strings to be displayed in the list
size

size of the ’list’ array
prompt

prompt to display the list object
label

label to display at top of list object
user_defined

flag indicating if a string object should be included to allow the user to enter a string that is not part of
the list array.

duplicates_ok
pass TRUE if the user is allowed to select the same item twice, FALSE otherwise

Output Arguments
num

returns the number of items selected from the list.

9-21

Xvutils Program Services Volume III - Chapter 9

Returns
An array of xvw_list_structs containing the strings and the indices of those strings describing the
selections made from the list by the user. Returns NULL if the user clicks on "Cancel".

Description
Takes an array of strings, and uses them to create a pop-up list object. The user is allowed to select as
many different strings as desired from the list; those strings are then returned to the caller with their
indices in an array of xvu_list_struct’s. If the user clicks on the "Cancel" button, NULL is returned.

Control is not returned to the application program until the user chooses an item from the list, or clicks
on "cancel".

If the "duplicates_ok" flag is passed as FALSE, the user will only be allowed to select any giv en item
from the list once. Selected items will be marked with a star. For example, the item "depth" would be
displayed as "depth" if it had never been selected, but would be displayed as "* depth" after it was
selected. A second click on the entry would cause it to be de-selected, and again it would be displayed
as "depth". The array of xvu_list_struct’s returned will have all unique elements; elements will appear
according to the order in which selections were made by the user.

If the "duplicates_ok" flag is passed as TRUE, the user will be allowed to select any item from the list
as many times as desired. Each selection from the list will cause that item to have the number in front
of it incremented. For example, the item "depth" would be displayed as "depth" if it had never been
selected, but "(1) depth" after the first time it was selected, and "(2) depth" after the second time it was
selected. The array of xvu_list_struct’s returned will have identical elements for each item that is
selected multiple times. The elements of the xvu_list_struct array will appear in the order in which the
items were selected by the user. For example, if the user chose "depth" twice, and then "width", and
then "depth" again before clicking on "Ok", the array of xvu_list_structs returned would appear in the
following order (identified by list_struct->string): depth, depth, width, depth.

If the "user_defined" flag is passed as TRUE, a string object will be created at the bottom of the list
object where the user will be allowed to enter their own new value for the list. When the user hits <cr>
following their newly defined list item, the new value will be added to the list, and may subsequently
be selected, either once (if duplicates are not allowed), or many times (if duplicates are allowed).

9-22

Table of Contents

A. Introduction . 9-1
B. Errors, Warnings, Prompts, and Information Display 9-1

B.1. kerror() — print error messages in a standardized format 9-2
B.2. kinfo() — print information messages in a standardized format 9-2
B.3. kprompt() — request an acknowledgement from the user 9-3
B.4. kchoose() — prompt the user to select from a list of items 9-5
B.5. ksave() — request an acknowledgement for quitting an application 9-6
B.6. kquit() — request an acknowledgement for quitting an application 9-7
B.7. xvu_choose_wait() — pop up a choose dialog box; wait for response 9-9
B.8. xvu_error_wait() — pop up error object (1 button); wait for acknowledgement 9-10
B.9. xvu_info_wait() — pop up info object (1 button); wait for acknowledgement 9-11
B.10. xvu_multiprompt_wait() — pop up dialog containing prompt and acknowledgement buttons

. 9-12
B.11. xvu_prompt_wait() — pop up prompting object (2 choices); wait for response 9-13
B.12. xvu_quit_wait() — pop up a quit dialog box; wait for response 9-14
B.13. xvu_save_wait() — pop up a save message; wait for response 9-15
B.14. xvu_warn_wait() — pop up warn object (1 button); wait for acknowledgement 9-16

C. Browser, Online Help, Misc Prompting, Lists, and File Viewing 9-17
C.1. xvu_browse_wait() — pop up the VisiQuest file/alias browser; wait for response 9-18
C.2. xvu_help_wait() — display help file or help directory 9-18
C.3. xvu_query_wait() — pop up prompt widget; wait for response 9-20
C.4. xvu_run_list_multsel_wait() — display list, wait for multiple choices and acknowledgement

. 9-21

- i -

Xvutils Program Services Volume III - Chapter 9

This page left intentionally blank

- ii -

Program Services Volume III

Chapter 10

Xvlang

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 10 - Xvlang

A. Introduction

The xvlang visual programming toolkit supports an object oriented approach to the design and implementation
of visual programming languages. The visual programming objects offered by xvlang toolkit are used by
VisiQuest, the visual programming language of the VisiQuest 2001 system. VisiQuest itself is actually a rel-
atively small application. Most of the functionality needed to implement it is provided by the visual program-
ming objects of the xvlang library. Admittedly, the visual programming objects offered by the xvlang library
are strongly influenced by the specific needs of VisiQuest; howev er, the visual programming toolkit is
designed to be as general and as flexible as possible, in order to support creation of new applications that fol-
low the visual programming paradigm.

Use of the visual programming objects available in xvlang allows flexibility and reusability to experiment with
different visual programming applications, and offers the possibility of adapting existing models to meet the
needs of new visual languages.

To create a new visual programming environment using the visual programming objects available in xvlang,
there are only two major tasks involved: (1) to create a new visual programming object, subclassed from the
Node object (see Section B.3), that enforces the desired model, and (2) to overload new sav e and restore meth-
ods in the Workspace object (see Section B.2) that will handle the visual network appropriately.

A visual language developed as a single monolithic application cannot easily be made flexible or expandable.
By providing a visual programming object which addresses each key component of the visual programming
environment, xvlang decouples the complexity of those visual programming components from the visual pro-
gramming environment itself. This allows the developer of the visual programming language to concentrate on
the visual programming paradigm to be designed, rather than on the functionality of the various components
necessary to the language.

Av ailable Functions

• xvw_create_node() - create an node object
• xvw_create_glyph() - create a glyph object
• xvw_create_conditional() - create a conditional object
• xvw_create_procedure() - create a procedure object
• xvw_create_port() - create a port object
• xvw_create_loop() - create a loop object
• xvw_create_workspace() - create a workspace object
• xvw_create_toolboxmenu() - create a toolbox menu object
• xvw_create_commandbar() - create a toolbox menu object
• xvw_create_toolboxlist() - create a toolbox list object
• xvw_create_finderlist() - create a finder list object

10-1

Xvlang Program Services Volume III - Chapter 10

B. Basic Visual Programming Capabilities

The visual objects needed to support the most basic visual programming capabilities include the glyph object,
the connection object, and the workspace object. The node object provides extensibility and flexibility within
the visual programming toolkit. The port object is used by the glyph object to represent input and output con-
nections within a visual program. The command bar object provides quick access to the most frequently used
workspace object capabilities.

B.1. The Glyph Object

Figure 1: The glyph consists of a pane access button, a run button, data input connection nodes, data out-
put connection nodes, and control connection nodes.

B.1.1. xvw_create_glyph() — create a glyph object

Synopsis
xvobject xvw_create_glyph(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

the name with which to reference the object

Returns
The glyph object on success, NULL on failure

Description
The purpose of the Glyph GUI object is to used to represent an operator within VisiQuest. Typically
these are data processing routines that have a set of inputs and outputs that can be used to connect to
other glyph’s in which to form a visual program.

10-2

Xvlang Program Services Volume III - Chapter 10

B.1.2. Attributes of the Glyph Object

Summary of Glyph Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_GLYPH_CLOSEPANE_PIXMAP Pixmap xvlang/misc/glyph/on.xpm any bitmap or pixmap

XVW_GLYPH_CONNECTION_PARENT xvobject NULL any xvobject that is subclassed off the

ManagerClass

XVW_GLYPH_CONTROL_PIXMAP Pixmap xvlang/misc/glyph/con-

trol.xpm

any bitmap or pixmap

XVW_GLYPH_DAV_PIXMAP Pixmap xvlang/misc/glyph/dav.xpm any bitmap or pixmap

XVW_GLYPH_DESTROY_PIXMAP Pixmap xvlang/misc/glyph/on.xpm any bitmap or pixmap

XVW_GLYPH_DISTRIBUTE_PIXMAP Pixmap xvlang/misc/glyph/on.xpm any bitmap or pixmap

XVW_GLYPH_ERROR_PIXMAP Pixmap xvlang/misc/glyph/error.xpm any bitmap or pixmap

XVW_GLYPH_EXPRESSION_ID long 0 and legal long value

XVW_GLYPH_FORM kform * NULL a kform structure with a single pane

XVW_GLYPH_FORMFILE char * NULL a UIS file with a single pane

XVW_GLYPH_INFO_PIXMAP Pixmap xvlang/misc/glyph/info.xpm any bitmap or pixmap

XVW_GLYPH_OFF_PIXMAP Pixmap xvlang/misc/glyph/on.xpm any bitmap or pixmap

XVW_GLYPH_ONAME char * NULL any object within the toolbox specified by

XVW_GLYPH_TBNAME

XVW_GLYPH_ON_PIXMAP Pixmap xvlang/misc/glyph/on.xpm any bitmap or pixmap

XVW_GLYPH_OPENPANE_PIXMAP Pixmap xvlang/misc/glyph/on.xpm any bitmap or pixmap

XVW_GLYPH_SHOWSTATUS int FALSE TRUE/FALSE

XVW_GLYPH_TBNAME char * NULL any leg al toolbox

XVW_GLYPH_WKSPGUI kform * NULL a kform structure with a single pane

Descriptions of Glyph Attributes

Attribute Description

XVW_GLYPH_CLOSEPANE_PIXMAP The pixmap that is used to close the glyph’s menuform

XVW_GLYPH_CONNECTION_PARENT The parent in which connections between glyphs should be

created. If NULL, then use the glyph’s parent object.

XVW_GLYPH_CONTROL_PIXMAP The pixmap that is used to indicate where control

connections can be made.

XVW_GLYPH_DAV_PIXMAP The pixmap that is used to indicate data available

XVW_GLYPH_DESTROY_PIXMAP The pixmap that is used to destroy the glyph

XVW_GLYPH_DISTRIBUTE_PIXMAP The pixmap that is used to distribute the location in which

a glyph will be executed

XVW_GLYPH_ERROR_PIXMAP The pixmap that is used to indicate that an error message

needs to be displayed.

10-3

Xvlang Program Services Volume III - Chapter 10

Descriptions of Glyph Attributes

Attribute Description

XVW_GLYPH_EXPRESSION_ID The id in which expressions should be evaluated. Initially

it uses id 0 so that all glyphs share, but if a glyph is

placed within a workspace, then the workspace will have the

id default to the workspace id itself.

XVW_GLYPH_FORM The UIS form which is used to represent the glyph. If

left NULL, then the XVW_GLYPH_TBNAME and

XVW_GLYPH_ONAME will

be used to retrieve the object’s pane file.

XVW_GLYPH_FORMFILE The UIS form file which is used to represent the glyph. If

left NULL, then the XVW_GLYPH_TBNAME and

XVW_GLYPH_ONAME will

be used to retrieve the object’s pane file.

XVW_GLYPH_INFO_PIXMAP The pixmap that is used to indicate that an information

message needs to be displayed.

XVW_GLYPH_OFF_PIXMAP The pixmap that indicates the glyph is not running

XVW_GLYPH_ONAME The object name in which the glyph is representing.

XVW_GLYPH_ON_PIXMAP The pixmap that indicates the glyph is running

XVW_GLYPH_OPENPANE_PIXMAP The pixmap that is used to open the glyph’s menuform

XVW_GLYPH_SHOWSTATUS Whether the status label beneath the glyph should appear.

XVW_GLYPH_TBNAME The toolbox in which the object name can be found.

XVW_GLYPH_WKSPGUI The form in which the glyph’s user interface selections should

be exported. If NULL then exporting selections is disabled.

B.1.3. Complete Resource Set of the Glyph Object

The complete resource set for the glyph object includes:

1. The glyph object attribute resource set, given in the previous section.

2. The node object attribute resource set, given in section G.2.

3. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3, "The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

4. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

10-4

Xvlang Program Services Volume III - Chapter 10

B.2. The Workspace Object

Figure 2: In this image of cantata, the command bar object appears above the workspace object. Here, a
visual network has been created within the workspace.

B.2.1. xvw_create_workspace() — create a workspace object

Synopsis
xvobject xvw_create_workspace(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

the name with which to reference the object

Returns
The workspace object on success, NULL on failure

10-5

Xvlang Program Services Volume III - Chapter 10

Description
The workspace visual programming object provides a canvas in which other visual programming
objects may be placed and combined into a visual program. The workspace object supports the saving,
restoring, execution, and management of visual programs. It also serves as a visual programming edi-
tor.

The workspace object does not directly support visual programming, but rather provides a canvas in
which other visual programming components can be combined in which to create a visual program. Its
role is similar to that of the manager object; however, instead of allowing the creation and management
of GUI objects, the workspace object allows the creation and management of visual programming
objects.

The workspace object allows (1) specification of an internal routine to be used for saving a network,
and (2) specification of an internal routine to be used for restoring a network.

The workspace object can be used to create new visual programming models other than the one used in
cantata; all that is necessary is to provide different routines for saving and restoring of networks.

Moreover, the workspace object has the capability to manipulate any other visual programming object
that is subclassed from the node object, such as glyphs, conditionals, loops, and procedures. However,
if the visual programming toolkit is extended to include other visual programming objects that are sub-
classed from the node object, they will automatically be usable in a workspace object.

As a visual programming editor, the workspace object comes with a full suite of capabilities including
running a network, stopping a network, single stepping through a network, resetting the network,
redrawing the network, clearing the network, checking the network, and providing information about
the network.

B.2.2. Attributes of the Workspace Object

Summary of Workspace Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_WORKSPACE_ACTIVE_CALLBACK kfunc_void NULL N/A

XVW_WORKSPACE_CHECK int N/A (read-only) TRUE

XVW_WORKSPACE_CLEAR int N/A (read-only) TRUE

XVW_WORKSPACE_CREATE_COUNTLOOP int N/A (read-only) TRUE

XVW_WORKSPACE_CREATE_PROCEDURE int N/A (read-only) TRUE

XVW_WORKSPACE_CREATE_WHILELOOP int N/A (read-only) TRUE

XVW_WORKSPACE_ECHO int TRUE TRUE/FALSE

XVW_WORKSPACE_EXPORT_SELECTIONS int N/A (read-only) TRUE

XVW_WORKSPACE_FILENAME char * NULL N/A

10-6

Xvlang Program Services Volume III - Chapter 10

Summary of Workspace Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_WORKSPACE_INFO int N/A TRUE

XVW_WORKSPACE_INHERIT int TRUE TRUE/FALSE

XVW_WORKSPACE_NAME char * NULL N/A

XVW_WORKSPACE_PARALLEL int TRUE TRUE/FALSE

XVW_WORKSPACE_PROCEDURE_OBJECT xvobject created by the

procedure object

any xvobject that is subclassed off the

ProcedureClass

XVW_WORKSPACE_REDRAW int N/A (read-only) TRUE

XVW_WORKSPACE_RESET int N/A (read-only) TRUE

XVW_WORKSPACE_RESPONSIVE int TRUE TRUE/FALSE

XVW_WORKSPACE_RESTORE char * N/A any leg al workspace file

XVW_WORKSPACE_RUN int N/A (read-only) TRUE

XVW_WORKSPACE_RUN_CALLBACK kfunc_void NULL N/A

XVW_WORKSPACE_SAVE char * N/A any leg al filename

XVW_WORKSPACE_SAVEALL char * N/A any leg al filename

XVW_WORKSPACE_SAVE_WKSPGUI char * N/A any leg al path to a file in which to store

the UIS

XVW_WORKSPACE_SHOW_CLIPBOARD int N/A (read-only) TRUE/FALSE

XVW_WORKSPACE_SHOW_WKSPGUI int N/A (read-only) TRUE

XVW_WORKSPACE_STEP int N/A (read-only) TRUE

XVW_WORKSPACE_STOP int N/A (read-only) TRUE

XVW_WORKSPACE_VARIABLES int KWORKSPACE_VARI-

ABLES_GLOBAL

KWORKSPACE_VARIABLES_GLOBAL

KWORKSPACE_VARIABLES_LOCAL

XVW_WORKSPACE_WKSPGUI kform * $DESIGN/objects/library/

xvlang/uis/panel.sub-

form

any leg al single pane kform structure

Descriptions of Workspace Attributes

Attribute Description

XVW_WORKSPACE_ACTIVE_CALLBACK If desired, a callback may be installed on the workspace object that will

be fired each time there is change to the active workspace. This helps

to define the workspace scope to show which workspace is currently

active.

XVW_WORKSPACE_CHECK After a network is constructed, this action attribute may be used to

"check" that all glyphs in the workspace have their required inputs and

outputs specified.

XVW_WORKSPACE_CLEAR After a network is constructed, this action attribute may be used to

"clear" all glyphs in the workspace so that the workspace is empty.

XVW_WORKSPACE_CREATE_COUNTLOOP This action attribute will take the currently selected glyphs within a

workspace and place them inside of a newly created count loop.

10-7

Xvlang Program Services Volume III - Chapter 10

Descriptions of Workspace Attributes

Attribute Description

XVW_WORKSPACE_CREATE_PROCEDURE This action attribute will take the currently selected glyphs within a

workspace and place them inside of a newly created procedure.

XVW_WORKSPACE_CREATE_WHILELOOP This action attribute will take the currently selected glyphs within a

workspace and place them inside of a newly created while loop.

XVW_WORKSPACE_ECHO When set to ’true’, this attribute causes the processes to be executed to

be echoed to the console log. This attribute may be set to true or false.

XVW_WORKSPACE_EXPORT_SELECTIONS After a network is constructed, this action attribute may be used to

export the selections from the selected glyphs into the workspace GUI.

XVW_WORKSPACE_FILENAME The workspace filename that represents the current workspace.

This is used by the commandbar object to know where to save

the current workspace to.

XVW_WORKSPACE_INFO After a network is constructed, this action attribute may be used to dis-

play "information" on all glyphs can be displayed.

XVW_WORKSPACE_INHERIT Procedures that are created from the top level workspace can have their

own local attributes, or can inherit their attributes from the parent

workspace. This attribute is made inactive on the toplevel parent. This

attribute may be set to true or false.

XVW_WORKSPACE_NAME The workspace name represents the name that is

reflected by the procedure object’s XVW_NODE_NAME.

XVW_WORKSPACE_PARALLEL When a workspace contains several independant networks, turning par-

allel execution to ’true’ makes the workspace execute quicker, as each

of the independant networks will execute simulataneously. This

attribute may be set to true or false.

XVW_WORKSPACE_PROCEDURE_OBJECT The procedure object represented by the Workspace. By default

this is NULL, but is necessary for the Workspace and Procedure

to establish a protocol.

XVW_WORKSPACE_REDRAW This action attribute is used to force a redisplay of the

XVW_WORKSPACE_RESET After a network is constructed, this action attribute may be used to

"touch" all glyphs in the workspace so that RUN will re-execute ALL

glyphs, whether or not they

XVW_WORKSPACE_RESPONSIVE When a workspace is put into ’responsive’ mode then the workspace

schedules glyphs such that scheduling of a network is continually done.

When a workspace is running then the scheduler will continously moni-

tor the network and run glyphs as they become modified. If the

workspace is not running then the scheduler is turned off. By turning

XVW_WORKSPACE_RESPONSIVE to FALSE the scheduler is always

turned off.

XVW_WORKSPACE_RESTORE This action attribute may be used to "restore" the workspace from the

specified filename.

XVW_WORKSPACE_RUN After a network is constructed, this action attribute may be used to

execute the entire network.

XVW_WORKSPACE_RUN_CALLBACK If desired, a callback may be installed on the workspace object that will

be fired each time a glyph is run or stopped within the workspace.

10-8

Xvlang Program Services Volume III - Chapter 10

Descriptions of Workspace Attributes

Attribute Description

XVW_WORKSPACE_SAVE After a network is constructed, this action attribute may be used to

"save" the workspace to the specified filename. Only the selected

glyphs will be saved. If no glyphs are selected then all glyphs are then

saved.

XVW_WORKSPACE_SAVEALL After a network is constructed, this action attribute may be used to

"save" the workspace to the specified filename. This differs from the

XVW_WORKSPACE_SAVE attribute since it saves all glyphs, irregardless

if they are selected or not.

XVW_WORKSPACE_SAVE_WKSPGUI This action attribute can be used to save the workspace GUI parameters

to a file. The filename is specified as part of the action attribute, which

will contain a valid UIS specifi- workspace object, from the current

workspace.

XVW_WORKSPACE_SHOW_CLIPBOARD The clipboard is used to hold cut or copied items for later pasting. This

this action attribute may be used to map or unmap the clipboard

workspace.

XVW_WORKSPACE_SHOW_WKSPGUI This action attribute can be used to force the workspace to map it’s

workspace GUI pane. If the pane is not realized then the pane is cre-

ated and then mapped. This attribute can be used by the programmer to

display the workspace GUI even if the workspace itself is not mapped.

This allows the user to interact with the visual program via the

workspace GUI parameters even though the workspace is not visible.

XVW_WORKSPACE_STEP After a network is constructed, this action attribute may be used to sin-

gle step execute a network.

XVW_WORKSPACE_STOP If a workspace is currently running, this action attribute may be used to

stop the execution of the entire network.

XVW_WORKSPACE_VARIABLES Variables and expressions can be local to a procedure or global to the

entire workspace. Setting ’Use Global Variables’ to ’false’ will cause

the variables to only be known within the local procedure or

workspace; setting available to all workspaces. This attribute may be

set to KWORKSPACE_VARIABLES_GLOBAL or KWORKSPACE_VARI-

ABLES_LOCAL

XVW_WORKSPACE_WKSPGUI This attribute is a read/only attribute that points to the GUI form struc-

ture which contains the workspace GUI parameters.

10-9

Xvlang Program Services Volume III - Chapter 10

B.2.3. Complete Resource Set of the Workspace Object

The complete resource set for the workspace object includes:

1. The workspace object attribute resource set, given in the previous section.

2. The canvas object attribute resource set, given in Chapter 3, "The kwidgets Library," Section E.2,
"Attributes of the Canvas Object."

3. The viewport object attribute resource set, given in Chapter 3, "The kwidgets Library," Section
K.2, "Attributes of the Viewport Object."

4. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3, "The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

5. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

B.3. The Node Object

B.3.1. xvw_create_node() — create an node object

Synopsis
xvobject xvw_create_node(

xvobject parent,
char *name)

Input Arguments
parent

parent of the node object; NULL will cause a default toplevel to be created automatically
name

name with which to reference node object

Returns
The node widget on success, NULL on failure

Description
The node object provides the base class which is used to create iconic representations of textual lan-
guage routines. The node object is the object from which the glyph objects are subclassed, and should
be used as the base class for any new visual programming objects that might be created for textual

10-10

Xvlang Program Services Volume III - Chapter 10

code representation.

The node object consists of a small window with an optional pixmap in the middle, and a name that
appears below the window. The node object supports interactive placement; the user can place the
node using a shadow outline, or the (x, y) position may be specified by the application.

A node object allows (1) specification of the corresponding routine to be executed, and (2) rules for
determining when that routine may be executed.

When the routine to be executed is specified as an external process, the Node object does "large grain"
execution, or distributed execution of operators representing individual programs, as the Glyph object
does. On the other hand, when the routine to be executed is specified as an internally defined function,
the node object does ""fine grain" execution, or the calling of a subroutine or function internal to the
visual programming language itself. Thus, the Node object can support both large grain and fine grain
visual programming.

The node object can be used to create new iconic representations; thus, it allows the xvlang library to
be extended to support visual programming constructs other than the ones currently used in cantata.

When the Node object is used as the base class for iconic representation of modules and the Workspace
object is utilized as the visual editor, any new visual object that is written to be subclassed off the Node
will automatically be supported by the existing system.

In addition, any such new visual programming objects will be capable of coexisting with existing
visual programming objects. They can be combined in a visual network as desired; allowed combina-
tions are only restricted by the visual programming model, as appropriate, but not by the visual pro-
gramming objects themselves.

B.3.2. Attributes of the Node Object

Summary of Node Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_NODE_EXECUTE int FALSE TRUE/FALSE

XVW_NODE_LEAVE int TRUE TRUE/FALSE

XVW_NODE_MODIFIED int TRUE TRUE/FALSE

XVW_NODE_MODIFIED_CALLBACK kfunc_void NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_NODE_NAME char * NULL any terminated string

10-11

Xvlang Program Services Volume III - Chapter 10

Summary of Node Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_NODE_PIXMAP Pixmap NULL Valid Pixmap structure

XVW_NODE_PIXMAPFILE char * NULL The full path to a valid xpm or xbm file,

defining the desired pixmap. Note that the

path may contain $TOOLBOX.

XVW_NODE_PLACEMENT int TRUE TRUE/FALSE

XVW_NODE_REMOTE_ENABLE int FALSE TRUE/FALSE

XVW_NODE_RESET int TRUE TRUE

XVW_NODE_RUNNABLE int FALSE TRUE/FALSE

XVW_NODE_RUN_CALLBACK kfunc_void NULL callback function, in the form:

void callback_function

xvobject object,

kaddr client_data,

kaddr call_data)

XVW_NODE_SHOW_DAV int TRUE TRUE/FALSE

XVW_NODE_SHOW_MODIFIED int TRUE TRUE/FALSE

XVW_NODE_TEST int FALSE TRUE/FALSE

XVW_NODE_TYPE int KNODE_TYPE_UNKNOWN KNODE_TYPE_UNKNOWN

KNODE_TYPE_SOURCE

KNODE_TYPE_TRANSFER

KNODE_TYPE_SINK

Descriptions of Node Attributes

Attribute Description

XVW_NODE_EXECUTE This action attribute executes a non-running node (set to TRUE), or

stops a currently executing node (set to FALSE).

XVW_NODE_LEAVE Indicates whether or not the node should be unmapped when its menu

is being displayed; when set to TRUE the node is left visible, when set

to FALSE, the node is unmapped.

XVW_NODE_MODIFIED Indicates whether the node is in an updated state, or has been modified

(and needs to be run). If TRUE, this attribute indicates that the node

needs to be executed. When TRUE, this attribute is also used to clear

the node’s data available indicators.

XVW_NODE_MODIFIED_CALLBACK If desired, a callback may be installed on the node that will be fired

when the node becomes modified. See XVW_NODE_MODIFIED for

details on node modified status.

XVW_NODE_NAME The name with which to identify the node. The name will be printed

below the node.

10-12

Xvlang Program Services Volume III - Chapter 10

Descriptions of Node Attributes

Attribute Description

XVW_NODE_PIXMAP This is the pixmap that appears in the center of the node. Candidates

for the value of this attribute may be created with the use of XCre-

atePixmap(); see The Xlib Reference Manual by O’Reilly and Asso-

ciates. Note that this attribute | is mutually exclusive with

XVW_NODE_PIXMAPFILE; specify one or the other, not both.

XVW_NODE_PIXMAPFILE This is the file defining the pixmap that appears in the center of the

node.

XVW_NODE_PLACEMENT Indicates whether or not the node should be placed interactively

(TRUE) or non-interactively (FALSE).

XVW_NODE_REMOTE_ENABLE If TRUE, this attribute indicates that the node is capable of being

executed on a remote architecure.

XVW_NODE_RESET This action attribute resets a node to it’s initial state. After a node has

been run, it is sometimes necessary to reset the node in order to get it

re-run.

XVW_NODE_RUNNABLE This action attribute allows the user to inquire if a node is ready to run.

This is used by the workspace step execute to see which glyph should

be run.

XVW_NODE_RUN_CALLBACK If desired, a callback may be installed on the node that will be fired

when the node is executed (turned ON) or stopped (turned OFF).

XVW_NODE_SHOW_DAV If TRUE, this attribute indicates that the node should display a visual

indication of when data is available at a port.

XVW_NODE_SHOW_MODIFIED If TRUE, this attribute specifies that the node should visually indicate

when it has been modified. See XVW_NODE_MODIFIED for details on

node modified status.

XVW_NODE_TEST This action attribute tests a non-running node (set to TRUE), or stops

testing a currently executing node (set to FALSE). It is used in order to

simulate running a network without actually running the network itself.

XVW_NODE_TYPE This attribute is used to represent the node type within a network topol-

ogy. The types of nodes are: KNODE_TYPE_UNKNOWN

KNODE_TYPE_SOURCE KNODE_TYPE_TRANSFER KNODE_TYPE_SINK

The source type is used to represent a node which has no inputs, but has

optional outputs. The transfer type is a node which has both specified

inputs and outputs. And finally the sink type is used to represent a

node which has inputs, but no outputs.

B.3.3. Complete Resource Set of the Node Object

The complete resource set for the node object includes:

1. The node object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3, "The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

10-13

Xvlang Program Services Volume III - Chapter 10

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

B.4. The Port Object

B.4.1. xvw_create_port() — create a port object

Synopsis
xvobject xvw_create_port(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

the name with which to reference the object

Returns
The port object on success, NULL on failure

Description
The purpose of the Port object is to provide a general mechanism for representing a "port" within a
visual program. Typically these are used by the glyph to represent input and output connections within
the visual program. Normally the port is created by other visual programming components, such as
the Node object, but is provided so that other styles of visual programs can be created.

The Port object is really available to reduce the complexity of the application programmer in dealing
with the user interactions of connecting Glyphs together. It also manages the complexity of represent-
ing the connections and the UIS that is used to represent the Port. So if the user updates the filename
represented by the Port, and the Port is an output, then the contains of the Ports connected to the out-
put, are updated appropriately.

10-14

Xvlang Program Services Volume III - Chapter 10

B.4.2. Attributes of the Port Object

Summary of Port Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PORT_CONNECTION_PARENT xvobject NULL any xvobject that is subclassed off the

ManagerClass

XVW_PORT_DAV int FALSE TRUE/FALSE

XVW_PORT_DAV_CALLBACK kfunc_void NULL any leg al callback routine

XVW_PORT_DAV_PIXMAP Pixmap xvlang/misc/

glyph/dav.xpm

any bitmap or pixmap

XVW_PORT_FILENAME char * NULL any leg al path and filename

XVW_PORT_FILENAME_CALLBACK kfunc_void NULL any leg al callback routine

XVW_PORT_MODIFIED int FALSE TRUE/FALSE

XVW_PORT_OPTIONAL_PIXMAP Pixmap xvlang/misc/

glyph/io_optional.xpm

any bitmap or pixmap

XVW_PORT_REQUIRED_PIXMAP Pixmap xvlang/misc/

glyph/io_required.xpm

any bitmap or pixmap

XVW_PORT_SELECTED int FALSE TRUE/FALSE

XVW_PORT_SELECTED_CALLBACK kfunc_void NULL any leg al callback routine

XVW_PORT_SELECTED_PIXMAP Pixmap xvlang/misc/

glyph/io_selected.xpm

any bitmap or pixmap

XVW_PORT_SELECTION kformstruct

*

NULL a leg al KUIS_INPUTFILE or KUIS_OUT-

PUTFILE selection

XVW_PORT_SHOWDAV int TRUE TRUE/FALSE

XVW_PORT_TYPE int KPORT_TYPE_UNKNOWN KPORT_TYPE_UNKNOWN

KPORT_TYPE_INPUT

KPORT_TYPE_OUTPUT

KPORT_TYPE_TRANSIENT

Descriptions of Port Attributes

Attribute Description

XVW_PORT_CONNECTION_PARENT The parent in which connections between ports should be created. If

NULL, then use the port’s parent object.

XVW_PORT_DAV Whether the port currently has data available or not. Data available is

used to indicate whether the port is referencing valid data or not. This

attribute is used in conjunction with the GlyphClass to coordinate the

scheduling and execution of glyphs.

XVW_PORT_DAV_CALLBACK Callback routines which will be notified when a port’s data available

state changes.

XVW_PORT_DAV_PIXMAP The pixmap that used to visually indicate that a port’s data available is

present.

10-15

Xvlang Program Services Volume III - Chapter 10

Descriptions of Port Attributes

Attribute Description

XVW_PORT_FILENAME Filename associated with the port. Depending on whether will be prop-

agated to other input ports.

XVW_PORT_FILENAME_CALLBACK Callback routines which will be notified when a port’s filename

changes.

XVW_PORT_MODIFIED Whether the port is current modified or not.

XVW_PORT_OPTIONAL_PIXMAP The pixmap that is used to visually indicate that a port is optionally not

selected.

XVW_PORT_REQUIRED_PIXMAP The pixmap that is used to visually indicate that a port is selected.

XVW_PORT_SELECTED Whether the port is currently optionally selected or not.

XVW_PORT_SELECTED_CALLBACK Callback routines which will be notified when a port changes whether it

is selected or not.

XVW_PORT_SELECTED_PIXMAP The pixmap that is used to visually indicate that a port is selected for

connecting with other ports.

XVW_PORT_SELECTION The UIS selection that is used to represent the port. The selection

needs to be either of type KUIS_INPUTFILE or KUIS_OUTPUTFILE .

XVW_PORT_SHOWDAV Whether the visual representation for data available should be dis-

played when data is available. The pixmap used for representing data

availabl can be specified by the XVW_PORT_DAV_PIXMAP resource.

XVW_PORT_TYPE The type of port. The port type is used to indicate how the information

of data available should be propagated. If the port is of type

KPORT_TYPE_OUTPUT , then when data available, XVW_PORT_DAV , is

set then the value will propagated to the other connections.

B.4.3. Complete Resource Set of the Port Object

The complete resource set for the port object includes:

1. The port object attribute resource set, given in the previous section.

2. The pixmap object attribute resource set, given in Chapter 3, "The kwidgets Library, section S.2,
"Attributes of the Pixmap Object."

3. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3, "The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

4. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

10-16

Xvlang Program Services Volume III - Chapter 10

B.5. The Command Bar Object

Figure 3: The commandbar object as used in cantata.

B.5.1. xvw_create_commandbar() — create a toolbox menu object

Synopsis
xvobject xvw_create_commandbar(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

the name with which to reference the object

Returns
The commandbar object on success, NULL on failure

Description
Creates a toolbox menu object, that consists of three menu objects. The first menu displays the differ-
ent categories. The second menu displays the sub-categories for the selected category. And finally the
third displays the operators for the selected sub-category.

Tw o callbacks are provided which can be used to notify the programmer when the user selects or acti-
vates an operator from the menu.

10-17

Xvlang Program Services Volume III - Chapter 10

B.5.2. Attributes of the Command Bar Object

Summary of Command Bar Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_COMMANDBAR_WORKSPACE kaddr NULL N/A

Descriptions of Command Bar Attributes

Attribute Description

XVW_COMMANDBAR_WORKSPACE The workspace object which the commandbar object is associated with.

B.5.3. Complete Resource Set of the Command Bar Object

The complete resource set for the command bar object includes:

1. The command bar object attribute resource set, given in the previous section.

2. The rowcol object attribute resource set, given in Chapter 3, "The kwidgets Library," Section H.2,
"Attributes of the RowCol Object."

3. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3, "The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

4. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

B.5.4. Example Using the Command Bar Object

#include <imagine.h>

static void quit_cb PROTO((xvobject, kaddr, kaddr));

/*
* This program demonstrates the use of the commandbar object, as well
* as the use of an announcement handler.
*
* It creates a workspace with a commandbar and quit button,
* and restores the color arithmetic workspace "workspaces:ColorArith1".
* The commandbar object may be used to perform various operations,
* such as clearing the workspace, restoring another workspace, creating
* a loop or a procedure, deleting selected glyphs, and so on.
*

10-18

Xvlang Program Services Volume III - Chapter 10

* A labelstring object is created beneath the command bar which will
* be updated by the announcement handler which is installed using
* kset_announcehandler(). This allows the label string to
* echo what each pixmap button on the command bar does when the pointer
* is moved over the command bar.
*/

static int update_status PROTO((char *, char *, char *, char *, char *));
static void quit_cb PROTO((xvobject, kaddr, kaddr));

xvobject status;
main(

int argc,
char *argv[])

{
xvobject parent, workspace, quit;
char *filename = "workspaces:ColorArith1";

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* Create the manager. Note that since the parent is NULL, a
* toplevel window will be created and the manager display placed
* inside.
*/
parent = xvw_create_manager(NULL, "Parent");

/*
* Create the quit button so that the user can quit
*/
quit = xvw_create_button(parent, "Quit");
xvw_set_attributes(quit,

XVW_LABEL, "Quit",
XVW_BELOW, NULL,
XVW_LEFT_OF, NULL,
XVW_CHAR_WIDTH, 6.0,
XVW_CHAR_HEIGHT, 1.2,
NULL);

/*-- Create the status labelstring --*/
status = xvw_create_label(parent, "Status");

xvw_set_attributes(status,
XVW_BORDER_WIDTH, 2,
XVW_TACK_EDGE, KMANAGER_TACK_HORIZ,

XVW_LEFT_OF, quit,
XVW_CHAR_MIN_HEIGHT, 1.0,

XVW_FORCE_REDISPLAY, TRUE,
NULL);

/*
* by using kset_announcehandler() to install the update_status()
* announcement handler, all calls to kannounce() made by the
* command bar object will be directed to the update_status() routine,

10-19

Xvlang Program Services Volume III - Chapter 10

* which in turn will update the status labelstring.
*/
kset_announcehandler(update_status);

/*
* Create the workspace. The XVW_WORKSPACE_RESTORE attribute is
* used to specify the workspace file to be restored.
*/
workspace = xvw_create_workspace(parent, "workspace");
xvw_set_attributes(workspace,

XVW_BELOW, status,
XVW_WIDTH, 750,
XVW_HEIGHT, 450,
XVW_WORKSPACE_RESTORE, filename,
NULL);

xvw_add_callback(quit, XVW_BUTTON_SELECT, quit_cb, parent);

/* display & run the program */
xvf_run_form();

}

/* ARGSUSED */
static void quit_cb(

xvobject object,
kaddr client_data,
kaddr call_data)

{
xvobject parent = (xvobject) client_data;
xvw_destroy(parent);

}

/* ARGSUSED */
static int update_status(

char *toolbox,
char *program,
char *library,
char *routine,
char *message)

{
xvw_set_attribute(status, XVW_LABEL, message);
return(TRUE);

}

C. User Interface Components

Each VisiQuest 2001 program has an assigned category, subcategory, and operator name. The use of the cat-
egory/subcategory/operator name convention imposes a hierarchy on the VisiQuest operators, and makes the
process of finding a particular operator from the hundreds of available operators a much easier task. The tool-
box menu, toolbox list, and finder list objects provide three different methods of glyph creation within the

10-20

Xvlang Program Services Volume III - Chapter 10

visual programming language.

C.1. The ToolboxMenu Object

Figure 4: The ToolboxMenu displays a set of pulldown menus offering access to the different programs
in the VisiQuest system, organized according to category and subcategory.

C.1.1. xvw_create_toolboxmenu() — create a toolbox menu object

Synopsis
xvobject xvw_create_toolboxmenu(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

the name with which to reference the object

Returns
The toolboxmenu object on success, NULL on failure

Description
The toolbox menu object allows the user to select an operator according to its category/subcate-
gory/operator name. In cantata, the toolbox menu object is used as the first method for glyph creation;
the Creates a toolbox menu object, that consists of three menu objects. The first menu displays the dif-
ferent categories. The second menu displays the sub-categories for the selected category. And finally
the third displays the operators for the selected sub-category.

Tw o callbacks are provided which can be used to notify the programmer when the user selects or acti-
vates an operator from the menu.

10-21

Xvlang Program Services Volume III - Chapter 10

C.1.2. Attributes of the ToolboxMenu Object

Summary of ToolboxMenu Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_TOOLBOXMENU_CREATE kfunc_void NULL N/A

Descriptions of ToolboxMenu Attributes

Attribute Description

XVW_TOOLBOXMENU_CREATE If desired, a callback may be installed on the toolboxmenu object that

will be fired each time an entry is desired to be created by the user.

This is done by the user selecting an entry from within the walking

pulldown menus.

C.1.3. Complete Resource Set of the ToolboxMenu Object

The complete resource set for the toolboxmenu object includes:

1. The toolboxmenu object attribute resource set, given in the previous section.

2. The rowcol object attribute resource set, given in Chapter 3, "The kwidgets Library," Section H.2,
"Attributes of the RowCol Object."

3. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3, "The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

4. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

C.1.4. Example Using the ToolboxMenu Object

#include <imagine.h>

/*
* This example demonstrates the use of the toolbox menu, a set of
* menu buttons and walking menus, which list the available operators
* in the VisiQuest system by category / subcategory / icon name.
*
* An event handler is installed for creation of an operator
* that is selected from the toolboxmenu.
*

10-22

Xvlang Program Services Volume III - Chapter 10

* Use the menubuttons labeled with the category to display menus
* with subcategory listings. Follow subcategory listings to display
* walking menus with the icon names of operators in that subcategory.
* Selecting an icon name from the walking menu will cause the cursor
* will change to the zen sign at which time you can move the
* pointer into the workspace and place a newly created glyph.
*/

static void toolboxmenu_create_cb PROTO((xvobject, kaddr, kaddr));

xvobject workspace;

int main(
int argc,
char *argv[])

{
xvobject parent, toolboxmenu;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror("example", "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

/* create a toplevel to place toolboxmenu and workspace */
parent = xvw_create_manager(NULL, "toplevel");

/*
* create the toolbox menu object, and install event
* handlers to print information on selection of an operator, and
* to create a glyph in the workspace.
*/
toolboxmenu = xvw_create_toolboxmenu(parent, "toolboxmenu");
xvw_set_attribute(toolboxmenu, XVW_TACK_EDGE, KMANAGER_TACK_HORIZ);
xvw_add_callback(toolboxmenu, XVW_TOOLBOXMENU_CREATE,

toolboxmenu_create_cb, NULL);

workspace = xvw_create_workspace(parent, "workspace");
xvw_set_attributes(workspace,

XVW_BELOW, toolboxmenu,
XVW_WIDTH, 700,
XVW_HEIGHT, 600,
NULL);

/* display & run the program */
xvf_run_form();

}

void toolboxmenu_create_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
xvobject node;
xvw_program_info *info = (xvw_program_info *) call_data;

10-23

Xvlang Program Services Volume III - Chapter 10

if (!info)
return;

node = xvl_create_node(workspace, info);
}

C.2. The ToolboxList Object

Figure 5: Here, the toolbox list shows the routines under the Arithmetic category and Bitwise Operators
sub-category.

C.2.1. xvw_create_toolboxlist() — create a toolbox list object

Synopsis
xvobject xvw_create_toolboxlist(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

the name with which to reference the object

10-24

Xvlang Program Services Volume III - Chapter 10

Returns
The toolboxlist object on success, NULL on failure

Description
Creates a toolbox list object, that consists of three list objects. The first list displays the different cate-
gories. The second list displays the sub-categories for the selected category. And finally the third dis-
plays the operators for the selected sub-category.

Tw o callbacks are provided which can be used to notify the programmer when the user selects or acti-
vates an operator from the list.

C.2.2. Attributes of the ToolboxList Object

Summary of FinderList Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_TOOLBOXLIST_CREATE kfunc_void NULL N/A

XVW_TOOLBOXLIST_OPEN int N/A TRUE

XVW_TOOLBOXLIST_SELECT kfunc_void NULL N/A

Descriptions of ToolboxList Attributes

Attribute Description

XVW_TOOLBOXLIST_CREATE If desired, a callback may be installed on the toolboxlist object that will

be fired each time an entry is desired to be created by the user. This

currently specified by either the user "double" clicking on an entry, or

the programmer using the XVW_TOOLBOXLIST_OPEN action attribute.

XVW_TOOLBOXLIST_OPEN This action attribute causes the XVW_TOOLBOXLIST_CREATE to be

fired with the currently selected toolbox list entry.

XVW_TOOLBOXLIST_SELECT If desired, a callback may be installed on the toolboxlist object that will

be fired each time an entry is selected within the toolbox list.

C.2.3. Complete Resource Set of the ToolboxList Object

The complete resource set for the toolboxlist object includes:

1. The toolboxlist object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3, "The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

10-25

Xvlang Program Services Volume III - Chapter 10

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects"

C.2.4. Example Using the ToolboxList Object

#include <imagine.h>

/*
* This example demonstrates the use of the toolbox list, a set of
* three list objects which list the available operators in the VisiQuest
* system by category / subcategory / icon name.
* Event handlers are installed for selection of an operator from the
* toolboxlist, and creation of an operator from the toolboxlist.
*
* To use:
* 1) Select a category, subcategory, or icon name from the toolboxlist.
* The information associated with the operator that corresponds to
* the currently selected category, subcategory, and icon name
* will be printed to the tty.
* 2) Double click on an icon name in the toolboxlist. The cursor
* will change to the zen sign at which time you can move the
* pointer into the workspace and place a newly created glyph.
*/

static void toolboxlist_select_cb PROTO((xvobject, kaddr, kaddr));
static void toolboxlist_create_cb PROTO((xvobject, kaddr, kaddr));

xvobject workspace;

main(
int argc,
char *argv[])

{
xvobject parent, toolboxlist;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "Unable to open display");
kexit(KEXIT_FAILURE);

}

/*
* create the toolbox list object, and install event
* handlers to print information on selection of an operator, and
* to create a glyph in the workspace.
*/
toolboxlist = xvw_create_toolboxlist(NULL, "toolboxlist");

xvw_set_attributes(toolboxlist,
XVW_WIDTH, 300,
XVW_HEIGHT, 200,

10-26

Xvlang Program Services Volume III - Chapter 10

NULL);
xvw_add_callback(toolboxlist, XVW_TOOLBOXLIST_SELECT,

toolboxlist_select_cb, NULL);
xvw_add_callback(toolboxlist, XVW_TOOLBOXLIST_CREATE,

toolboxlist_create_cb, NULL);

workspace = xvw_create_workspace(NULL, "workspace");
xvw_set_attributes(workspace,

XVW_WIDTH, 500,
XVW_HEIGHT, 600,
NULL);

/* display & run the program */
xvf_run_form();

}

void toolboxlist_select_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
xvw_program_info *program_info = (xvw_program_info *) call_data;

kfprintf(kstderr, "Program Info:\n");
kfprintf(kstderr, "Toolbox name = %s\n", program_info->tbname);
kfprintf(kstderr, "Object name = %s\n", program_info->oname);
kfprintf(kstderr, "Category = %s\n", program_info->category);
kfprintf(kstderr, "Subcategory = %s\n", program_info->subcategory);
kfprintf(kstderr, "Icon Name = %s\n", program_info->icon_name);
kfprintf(kstderr, "Pane File = %s\n", program_info->panefile);
kfprintf(kstderr, "Short Desc = %s\n\n", program_info->short_desc);

}

void toolboxlist_create_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
xvobject glyph;

xvw_program_info *program_info = (xvw_program_info *) call_data;

glyph = xvw_create_glyph(workspace, "glyph");
xvw_set_attributes(glyph,

XVW_NODE_NAME, program_info->icon_name,
XVW_GLYPH_FORMFILE, program_info->panefile,
XVW_GLYPH_TBNAME, program_info->tbname,
XVW_GLYPH_ONAME, program_info->oname,
NULL);

}

10-27

Xvlang Program Services Volume III - Chapter 10

C.3. The FinderList Object

Figure 6: Here, the toolbox finder list shows the list of routines in the system with short descriptions that
matches the expression "bit.*".

C.3.1. xvw_create_finderlist() — create a finder list object

Synopsis
xvobject xvw_create_finderlist(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

the name with which to reference the object

Returns
The finder list object on success, NULL on failure

10-28

Xvlang Program Services Volume III - Chapter 10

Description
Creates a finder list object. The finder list is used to select an operator by name; key words can also be
used to scan for a particular operator. The finder list consists of a single list containing all available
operators; the user may scroll through the list and select the desired operator.

Tw o callbacks are provided which can be used to notify the programmer when the user selects or acti-
vates an operator from the list.

C.3.2. Attributes of the FinderList Object

Summary of FinderList Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_FINDERLIST_CREATE kfunc_void NULL N/A

XVW_FINDERLIST_EXPRESSION char * NULL any regular expression

XVW_FINDERLIST_OPEN int N/A TRUE

XVW_FINDERLIST_SELECT kfunc_void NULL N/A

Descriptions of FinderList Attributes

Attribute Description

XVW_FINDERLIST_CREATE If desired, a callback may be installed on the finderlist object that will

be fired each time an entry is desired to be created by the user. This

currently specified by either the user "double" clicking on an entry, or

the programmer using the XVW_FINDERLIST_OPEN action attribute.

10-29

Xvlang Program Services Volume III - Chapter 10

Descriptions of FinderList Attributes

Attribute Description

XVW_FINDERLIST_EXPRESSION The regular expression used within the finder list. The regular expres-

sion which uses the following syntax.

. Match any single character except newline * Match the

preceding character or range

of characters 0 or more times. The

matching includes items within a [...].

[...] or [ˆ..] Matches any one character contained within

the brackets. If the first character after

the ’[’ is the ’]’, then it is included in

the characters to match. If the first

character after the ’[’ is a ’ˆ’, then it

will match all characters NOT included in

the []. The ’-’ will indicate a range of

characters. For example, [a-z] specifies

all characters between and including the

ascii values ’a’ and ’z’. If the ’-’

follows the ’[’ or is right before the ’]’

then it is interpreted literally.

ˆ If this is the first character of the

regular expression, it matches the beginning

of the line.

$ If this is the last character of the

regular expression, it matches the end of

the line.

\ This escapes the meaning of a special character.

XVW_FINDERLIST_OPEN This action attribute causes the XVW_FINDERLIST_CREATE to be fired

with the currently selected finder entry.

XVW_FINDERLIST_SELECT If desired, a callback may be installed on the finderlist object that will

be fired each time an entry is selected within the finderlist.

C.3.3. Complete Resource Set of the FinderList Object

The complete resource set for the finderlist object includes:

1. The finderlist object attribute resource set, given in the previous section.

2. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3, "The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

10-30

Xvlang Program Services Volume III - Chapter 10

3. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

C.3.4. Example Using the FinderList Object

#include <imagine.h>

/*
* This example demonstrates the use of the finderlist, a list containing
* all available operators in the VisiQuest system in alphabetical order.
* First, a finderlist object is created to display the different
* operators available in the system; a textinput object underneath
* allows you to enter a key word with which to scan available operators.
* Event handlers are installed for selection of an operator from the
* finderlist, and creation of an operator from the finder list.
*
* To use:
* 1) Select an operator from the finder list. It’s associated
* information will be printed to the tty.
* 2) Enter a scan string in the textinput selection below the finder
* list, such as "reverse" or "invert". The finderlist will be
* updated with only those operators that include the specified
* string as part of their icon name, category, subcategory, or
* short description.
* 3) Double click on an operator in the finder list. The cursor
* will change to the zen sign at which time you can move the
* pointer into the workspace and place a newly created glyph.
*/

static void finderlist_select_cb (xvobject, kaddr, kaddr);
static void finderlist_create_cb (xvobject, kaddr, kaddr);
static void textinput_cb (xvobject, kaddr, kaddr);

xvobject workspace, parent;

void main(
int argc,
char **argv)

{
xvobject parent, text, finderlist;

/* initialize VisiQuest program */
khoros_initialize(argc, argv, "DESIGN");

/* initialize the xvwidgets lib */
if (!xvw_initialize(XVW_MENUS_XVFORMS))
{

kerror(NULL, "main", "unable to open display");
kexit(KEXIT_FAILURE);

}

parent = xvw_create_manager(NULL, "finderlist");
xvw_set_attributes(parent,

XVW_MINIMUM_WIDTH, 400,
XVW_MINIMUM_HEIGHT, 250,

10-31

Xvlang Program Services Volume III - Chapter 10

NULL);

text = xvw_create_textinput(parent, "text");
xvw_set_attributes(text,

XVW_ABOVE, NULL,
XVW_TACK_EDGE, KMANAGER_TACK_HORIZ,
NULL);

/*
* Create the workspace. Note that since the parent is NULL, a
* toplevel window will be created and the workspace display placed
* inside. The XVW_WORKSPACE_RESTORE attribute is used to specify

* the workspace file to be restored.
*/
finderlist = xvw_create_finderlist(parent, "finderlist");

xvw_set_attributes(finderlist,
XVW_TACK_EDGE, KMANAGER_TACK_ALL,
XVW_ABOVE, text,

NULL);

xvw_add_callback(finderlist, XVW_FINDERLIST_SELECT,
finderlist_select_cb, NULL);

xvw_add_callback(finderlist, XVW_FINDERLIST_CREATE,
finderlist_create_cb, NULL);

xvw_add_callback(text, XVW_TEXTINPUT_CALLBACK,
textinput_cb, finderlist);

workspace = xvw_create_workspace(NULL, "workspace");
xvw_set_attributes(workspace,

XVW_WIDTH, 700,
XVW_HEIGHT, 800,
NULL);

/* display & run the program */
xvf_run_form();

}

void finderlist_select_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
xvw_program_info *program_info = (xvw_program_info *) call_data;

kfprintf(kstderr, "Program Info:\n");
kfprintf(kstderr, "Toolbox name = %s\n", program_info->tbname);
kfprintf(kstderr, "Object name = %s\n", program_info->oname);
kfprintf(kstderr, "Category = %s\n", program_info->category);
kfprintf(kstderr, "Subcategory = %s\n", program_info->subcategory);
kfprintf(kstderr, "Icon Name = %s\n", program_info->icon_name);
kfprintf(kstderr, "Pane File = %s\n", program_info->panefile);
kfprintf(kstderr, "Short Desc = %s\n\n", program_info->short_desc);

}

void finderlist_create_cb(
xvobject object,

10-32

Xvlang Program Services Volume III - Chapter 10

kaddr client_data,
kaddr call_data)

{
xvobject glyph;

xvw_program_info *program_info = (xvw_program_info *) call_data;

glyph = xvw_create_glyph(workspace, "glyph");
xvw_set_attributes(glyph,

XVW_NODE_NAME, program_info->icon_name,
XVW_GLYPH_FORMFILE, program_info->panefile,
XVW_GLYPH_TBNAME, program_info->tbname,
XVW_GLYPH_ONAME, program_info->oname,
NULL);

}

void textinput_cb(
xvobject object,
kaddr client_data,
kaddr call_data)

{
xvobject finderlist = (xvobject) client_data;
char *expr = *((char **) call_data);

xvw_set_attribute(finderlist, XVW_FINDERLIST_EXPRESSION, expr);
}

D. Hierarchy

D.1. The Procedure Object

Figure 7: The procedure object.

D.1.1. xvw_create_procedure() — create a procedure object

Synopsis
xvobject xvw_create_procedure(

xvobject parent,

10-33

Xvlang Program Services Volume III - Chapter 10

char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

the name with which to reference the object

Returns
The procedure object on success, NULL on failure

Description
The purpose of the procedure GUI object is to provide a visual heirarchy for visual programming. The
procedure object consists of glyph object, which is the node used to represent the iconified visual pro-
gram. When the Procedure is opened a workspace object will be mapped which will contain the visual
program. The workspace can be used to construct visual programs, where the exported input/output
parameters will appear on the Procedure object as input & output ports.

D.1.2. Attributes of the Procedure Object

Summary of Procedure Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_PROCEDURE_OPEN_PIXMAP Pixmap xvlang/misc/glyph/open.xpm any bitmap or pixmap

XVW_PROCEDURE_PIXMAP Pixmap xvlang/misc/glyph/proce-

dure.xpm

any bitmap or pixmap

XVW_PROCEDURE_WORKSPACE_OBJECT xvobject created by the procedure

object

any xvobject that is subclassed off the

ManagerClass

Descriptions of Procedure Attributes

Attribute Description

XVW_PROCEDURE_OPEN_PIXMAP The pixmap that is used to open a procedure glyph.

XVW_PROCEDURE_PIXMAP The pixmap that is displayed in the center of the procedure.

XVW_PROCEDURE_WORKSPACE_OBJECT The workspace object represented by the Procedure.

D.1.3. Complete Resource Set of the Procedure Object

The complete resource set for the procedure object includes:

10-34

Xvlang Program Services Volume III - Chapter 10

1. The procedure object attribute resource set, given in the previous section.

2. The glyph object attribute resource set, given in section E.2.

3. The node object attribute resource set, given in section G.2.

4. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3, "The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

5. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

E. Control Flow

Control flow allows visual programs to branch and merge data flow, and to implement loops. The xvlang
visual programming toolkit offers two types of objects that address the issues of control flow: the loop object
and the conditional object. Both the Loop object and the Conditional object are special cases of (i.e., sub-
classed from) the Glyph object.

E.1. The Conditional Object

Figure 8: Here, the conditional object is used to instantiate an if/else glyph.

E.1.1. xvw_create_conditional() — create a conditional object

Synopsis
xvobject xvw_create_conditional(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

the name with which to reference the object

10-35

Xvlang Program Services Volume III - Chapter 10

Returns
The image object on success, NULL on failure

Description
The purpose of the Conditional GUI object is to provide a visual programming component in which to
implement conditional flow constructs. Conditional flow constructs include such configurations as "if
then else", "switch", etc.

E.1.2. Attributes of the Conditional Object

Summary of Conditional Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_CONDITIONAL_TYPE int N/A N/A

Descriptions of Conditional Attributes

Attribute Description

XVW_CONDITIONAL_TYPE Not available at this time.

10-36

Xvlang Program Services Volume III - Chapter 10

E.1.3. Complete Resource Set of the Conditional Object

The complete resource set for the conditional object includes:

1. The conditional object attribute resource set, given in the previous section.

2. The glyph object attribute resource set, given in section E.2.

3. The node object attribute resource set, given in section G.2.

4. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3, "The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

5. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

E.2. The Loop Object

Figure 9: Here, the loop object is used to instantiate a while loop glyph.

E.2.1. xvw_create_loop() — create a loop object

Synopsis
xvobject xvw_create_loop(

xvobject parent,
char *name)

Input Arguments
parent

the parent object; NULL will cause a default toplevel to be created automatically
name

the name with which to reference the object

Returns
The loop object on success, NULL on failure

10-37

Xvlang Program Services Volume III - Chapter 10

Description
The purpose of the loop GUI object is to provide a visual heirarchy for visual programming. The loop
object consists of glyph object, which is the node used to represent the iconified visual program.
When the Loop is opened a workspace object will be mapped which will contain the visual program.
The workspace can be used to construct visual programs, where the exported input/output parameters
will appear on the Loop object as input & output ports.

E.2.2. Attributes of the Loop Object

Summary of Loop Attributes

Attribute Type Default Legal
(Resource Name) Values

XVW_LOOP_TYPE int N/A N/A

Descriptions of Loop Attributes

Attribute Description

XVW_LOOP_TYPE Not available at this time.

E.2.3. Complete Resource Set of the Loop Object

The complete resource set for the loop object includes:

1. The loop object attribute resource set, given in the previous section.

2. The procedure object attribute resource set, given in section I.2.

3. The glyph object attribute resource set, given in section E.2.

4. The node object attribute resource set, given in section G.2.

5. The VisiQuest 2001 Manager attribute resource set, given in Chapter 3, The kwidgets Library,"
Section B.2, "Attributes of the VisiQuest 2001 Manager Object."

6. The general object attributes, given in Chapter 2, "The xvwidgets Library," Section B, "General
Attributes of GUI and Visual Objects."

10-38

Table of Contents

A. Introduction . 10-1
B. Basic Visual Programming Capabilities 10-2

B.1. The Glyph Object . 10-2
B.1.1. xvw_create_glyph() — create a glyph object 10-2
B.1.2. Attributes of the Glyph Object 10-3
B.1.3. Complete Resource Set of the Glyph Object 10-4

B.2. The Workspace Object . 10-5
B.2.1. xvw_create_workspace() — create a workspace object 10-5
B.2.2. Attributes of the Workspace Object 10-6
B.2.3. Complete Resource Set of the Workspace Object 10-10

B.3. The Node Object . 10-10
B.3.1. xvw_create_node() — create an node object 10-10
B.3.2. Attributes of the Node Object . 10-11
B.3.3. Complete Resource Set of the Node Object 10-13

B.4. The Port Object . 10-14
B.4.1. xvw_create_port() — create a port object 10-14
B.4.2. Attributes of the Port Object . 10-15
B.4.3. Complete Resource Set of the Port Object 10-16

B.5. The Command Bar Object . 10-17
B.5.1. xvw_create_commandbar() — create a toolbox menu object 10-17
B.5.2. Attributes of the Command Bar Object 10-18
B.5.3. Complete Resource Set of the Command Bar Object 10-18
B.5.4. Example Using the Command Bar Object 10-18

C. User Interface Components . 10-20
C.1. The ToolboxMenu Object . 10-21

C.1.1. xvw_create_toolboxmenu() — create a toolbox menu object 10-21
C.1.2. Attributes of the ToolboxMenu Object 10-22
C.1.3. Complete Resource Set of the ToolboxMenu Object 10-22
C.1.4. Example Using the ToolboxMenu Object 10-22

C.2. The ToolboxList Object . 10-24
C.2.1. xvw_create_toolboxlist() — create a toolbox list object 10-24
C.2.2. Attributes of the ToolboxList Object 10-25
C.2.3. Complete Resource Set of the ToolboxList Object 10-25
C.2.4. Example Using the ToolboxList Object 10-26

C.3. The FinderList Object . 10-28
C.3.1. xvw_create_finderlist() — create a finder list object 10-28
C.3.2. Attributes of the FinderList Object 10-29
C.3.3. Complete Resource Set of the FinderList Object 10-30
C.3.4. Example Using the FinderList Object 10-31

D. Hierarchy . 10-33
D.1. The Procedure Object . 10-33

D.1.1. xvw_create_procedure() — create a procedure object 10-33
D.1.2. Attributes of the Procedure Object 10-34
D.1.3. Complete Resource Set of the Procedure Object 10-34

E. Control Flow . 10-35
E.1. The Conditional Object . 10-35

E.1.1. xvw_create_conditional() — create a conditional object 10-35

- i -

Xvlang Program Services Volume III - Chapter 10

E.1.2. Attributes of the Conditional Object 10-36
E.1.3. Complete Resource Set of the Conditional Object 10-37

E.2. The Loop Object . 10-37
E.2.1. xvw_create_loop() — create a loop object 10-37
E.2.2. Attributes of the Loop Object . 10-38
E.2.3. Complete Resource Set of the Loop Object 10-38

- ii -

Program Services Volume III

Chapter 11

App-defaults

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 11 - App-defaults

A. About app-defaults files

VisiQuest 2001 allows you to choose your own preferences. Suppose you prefer the GUI’s of all applications
to use a specific font. Perhaps you would like all 2D plots to come up with a default plot type of Discrete, or
you like to see 2D axes displayed in green. You might decide that you like the pseudocolor object’s palette to
be of type colorwheel, or that you prefer the Spline connection type to be used to connect glyphs in VisiQuest.

All such preferences can be specified by setting resources in an application defaults file, or app-defaults file.
There are two ways that resources can be set: (1) by the developer, in the code of the application, and (2) by
the end user, in the appropriate app-defaults file.

App-defaults files are provided with VisiQuest 2001 to serve as models. You should not modify these app-
defaults files. Instead, copy the files of interest to the directory $HOME/.kri/KP2001/app-defaults
(you will have to create the app-defaults directory the first time you use it), and modify the copies as desired to
specify your personal preferences.

There are two types of app-defaults files in VisiQuest 2001: object app-defaults files and application app-
defaults files. Object app-defaults files are those that set the resources of entire classes of the different visual
and GUI objects. For example, a resource setting for the button object in the Button app-defaults file will
affect all buttons of all VisiQuest 2001 applications. The application app-defaults files are those that specify
resources for a particular application.

Animate Image Browser Plot2D

cantata craftsman guise xprism composer

 App-defaults Files
Viewport ColorCell Pseudo etc...

etc..

Scoping of App-defaults Files

Visual & GUI Object Class

Application App-defaults Files

Figure 1: App-defaults files can specify resources by GUI or visual object, or by application.

A.1. GUI & Visual Object App-Defaults Files

There are a large number of object app-defaults files which specify resources by class. Every GUI and visual
object available in the kwidgets, xvobjects, xvisual, and xvlang libraries of GUI & Visualization Services may
have an associated app-defaults file. Template app-defaults files for GUI & visual objects may be found in one
of the following directories,

$TOOLBOX/objects/library/kwidgets/app-defaults
$TOOLBOX/objects/library/xvobjects/app-defaults
$TOOLBOX/objects/library/xvisual/app-defaults

11-1

App-defaults Program Services Volume III - Chapter 11

$TOOLBOX/objects/library/xvlang/app-defaults

depending on where the class definition for the object in question exists. App-defaults files for visual and GUI
objects are named after the object. Filenames are capitalized, as in "Browser," "ColorCell," "Image," and
"Plot2D." Note that the template object app-defaults files provided with VisiQuest 2001 are not actually used
to set defaults; they are provided as models only.

GUI and visual object-specific, app-defaults files should include only those resource specifications which per-
tain to the class of the object in question.

A.2. Application Specific App-Defaults Files

Application app-defaults files specify resources for a particular application; there may be one app-defaults file
for each xvroutine. Note that kroutines cannot have app-defaults files, since kroutines do not create GUI or
visual objects.

The name of the application defaults file will be the same as the application name. The default app-defaults file
for each application will be located in the app-defaults directory of the application. For example, the default
app-defaults file for VisiQuest is be located in:

$TOOLBOX/objects/xvroutine/VisiQuest/app-defaults/VisiQuest

App-defaults files for applications are named after the application, as in guise, VisiQuest, and craftsman.
Note that filenames are NOT capitalized. Note that the default application app-defaults files provided with the
VisiQuest 2001 are really used to set defaults; modifications to these files will result in site-wide change in the
appearance of the application.

Application-specific, app-defaults files should include only resource specifications for the corresponding appli-
cation.

A.3. Precedence for Scoping of App-defaults Files

Application-specific, app-defaults files take precedence over object app-defaults files. User-specified, app-
defaults files located in $HOME/.kri/KP2001/app-defaults take precedence over app-defaults files that are pro-
vided with VisiQuest 2001. For example, suppose you want all buttons to have a particular background color
by default. It is easiest and most sensible to specify this in the "Button" app-defaults file, as opposed to setting
the background color of buttons in the app-defaults file for every xvroutine. Suppose, however, that you only
want the buttons in VisiQuest to have a particular color. In this case, you would specify the differing back-
ground color for buttons in the VisiQuest app-defaults file; the VisiQuest specification would over-ride the
specification made in the "Button" app-defaults file, but all other xvroutines would continue to use the default.

Application-specific, app-defaults files specify the name of the application, whereas object app-defaults files
specify only the name of the object class. For example, the entry:

*Button*background: grey

in the "Button" app-defaults file will make all buttons in every VisiQuest 2001 application have a background
color of grey. Now, to over-ride the grey background setting for those buttons that appear in VisiQuest, you
would add to the VisiQuest app-defaults file:

VisiQuest*Button*background: yellow

The result of having both app-defaults files will be that buttons in VisiQuest have a yellow background, while

11-2

App-defaults Program Services Volume III - Chapter 11

all other buttons in VisiQuest 2001 have a grey background.

A.4. Creating Your Own App-Defaults files

It is location and naming convention that make app-defaults files work properly. When applications are ini-
tialized and objects are being created, GUI & Visualization Services will scan your home directory for:

$HOME/.kri/KP2001/app-defaults/

If the directory exists, and there is an app-defaults file inside named appropriately for the object being created
or the application in question, the resources specified in that file will over-ride the defaults specified by
VisiQuest 2001.

You may have as many or as few app-defaults files in your

$HOME/.kri/KP2001/app-defaults/

directory as you like.

For example, suppose you would like to specify resources for the applications guise and VisiQuest, and for the
2D plot object. You begin by creating an "app-defaults" directory in your home account. You then copy the
four desired predefined app-defaults files to your directory. The following code segment shows the procedure
to be followed:

% cd ˜/.kri/KP2001
% mkdir app-defaults
% cd app-defaults
% cp $DESIGN/objects/xvroutine/VisiQuest/app-defaults/VisiQuest .
% cp $DESIGN/objects/xvroutine/guise/app-defaults/guise .
% cp $DESIGN/objects/library/xvisual/app-defaults/Plot2D .

Finally, you can modify your versions of the app-defaults files to specify resources as desired. The next time
you execute guise or VisiQuest, or use an application that displays a 2D plot, the resources specified in your
personal app-defaults files will take effect.

Important Note: If resource specifications in app-defaults files are made incorrectly, no error messages will be
issued; the incorrect resource setting will simply have no effect.

A.5. Application Interaction with App-Defaults Files

As mentioned earlier, there are two ways that a resource may be specified. The developer of an application
may specify the resource in the code of the application, or the end user of the application may specify the
resource in an app-defaults file.

For example, suppose that two attributes of interest are the plot type in which a 2D plot will be displayed, and
the foreground color in which it will appear. These resources might be specified by the developer as "Line
Plot" and "yellow" in the application as follows:

xvw_set_attributes(plot2d_object,
XVW_PLOT2D_PLOTTYPE, KPLOT2D_LINEPLOT,
XVW_FOREGROUND_COLOR, "yellow",
NULL);

Alternatively, the two resources might be specified by the end user as "Discrete" and "green" in the "Plot2D"

11-3

App-defaults Program Services Volume III - Chapter 11

app-defaults file with:

*Plot2D.plot2DPlotType: 2
*Plot2D.foreground: green

However, it is critical to understand that ONLY those resources NOT specified in the code of the application
will take effect when set by the end user in the app-defaults file. Thus, in the example above, if the plot type
and the foreground color were set both in the application and in the app-defaults file, the specification by the
application would take precedence. You cannot over-ride resources that were set by the developer of an appli-
cation. The plot would come up as a yellow line plot, regardless of the app-defaults file settings.

For this reason, it is recommended that all non-critical resource settings not be specified in the application.
This allows the end user to specify resource settings as desired in an app-defaults file.

A.6. Issues With Regard to Specification of Object Resources

There are a few simple concepts used in object-oriented programming which should be understood in order to
use app-defaults files efficiently and successfully. These include the concepts of inheritance, class-specific
resources, and sub-parts of objects.

A.6.1. Inheritance & Class-Specific Resources

The GUI & visual objects offered by GUI & Visualization Services are designed in an object-oriented
approach. This means that they inherit resources from the objects from which they are subclassed. In addi-
tion, they hav e their own class-specific resources. Class-specific resources are resources that are particular to
the object in question; class-specific resources, in turn, will be inherited by any other objects that are sub-
classed from the object in question. Thus, app-defaults files for GUI & visual objects may contain settings not
only for their own class-specific resources, but also for resources inherited from the objects from which they
are subclassed.

In the following sections, the inheritance of each object is included in the app-defaults file, as in the following
example using the PanIcon visual object:

INHERITANCE: manager -> graphics -> color -> image -> panicon

This may be read as, "The PanIcon object is subclassed from the Image object, which is subclassed from the
Color class, which is subclassed from the Graphics class, which is subclassed from the Manager object." It
implies that in the PanIcon app-defaults file, you may specify the following resources in order to control the
operation and appearance of the panicon object:

Class-specific resources of the PanIcon object

Class-specific resources of the Image object

Class-specific resources of the Color class

11-4

App-defaults Program Services Volume III - Chapter 11

Class-specific resources of the Graphics class

Class-specific resources of the Manager object

In addition to the inheritance for the object, the app-defaults file also lists any class-specific resources for the
object, as in the following example using the PanIcon:

CLASS-SPECIFIC RESOURCES: paniconSize

This states that the PanIcon object has only one class-specific resource of its own: the PanIcon size. However,
resources of the Image object, Color class, Graphics class, and Manager object may also be specified in the
PanIcon app-defaults file.

Thus, to get the full set of possible resources that can be set in an app-defaults file, you must read the inheri-
tance listing of the object, and refer to the app-defaults resources listed for all the objects in the inheritance
listing.

A.6.2. Precedence for Inheritance of Objects

Just as an object inherits attributes from the objects in its inheritance tree, it also inherits resource specifica-
tions from the app-defaults files of the objects in its inheritance tree. Thus, the PanIcon app-defaults file may
not include a specification for the border width, but may inherit the specification for the border width specified
for the Manager object in the Manager app-defaults file. You can, of course, over-ride inherited resource spec-
ifications simply by a new resource specification in the app-defaults files of the object in question. For exam-
ple, if you want the PanIcon object to have a border width other than the default specified in the Manager app-
defaults file, specifying the border width of the PanIcon directly will do the trick. Thus,

*PanIcon.borderWidth: 5

In the PanIcon app-defaults file will over-ride

*Manager.borderWidth: 2

in the Manager app-defaults file. When inherited resources are set in an app-defaults file, they will only affect
the object in question, not the objects from which the object in question is sub-classed. Thus, if the border
width resource inherited from the Manager object is specified in the PanIcon app-defaults file, the specification
will take effect for panicon objects, but not for any other object.

A.6.3. Sub-Parts

Some GUI and visual objects contain other objects inside them; these subordinate objects are referred to as
sub-parts. For example, the 2D Axis object contains two sub-parts: one axis object to represent the X axis,
and another axis object to represent the Y axis.

When an object contains sub-parts, resources for those sub-parts may be specified in the app-defaults file.
App-defaults settings for sub-parts must reference the name for the sub-part that was specified by the object
when the sub-part was created. A listing of the sub-parts of an object, their names, and types are given in the
app-defaults file when relevant, as follows:

11-5

App-defaults Program Services Volume III - Chapter 11

! SUB-PARTS: Sub-parts of the 2D Axis object include:
!
! *Axis2D.xaxis /* axis object,
! serves as the X axis */
! *Axis2D.yaxis /* axis object,
! serves as the Y axis */
!
! You may specify resources for sub-parts of the axis object as desired.
! See Axis app-defaults file for resources that can be set on
! *Axis2D.xaxis and *Axis2D.yaxis.

For example, the foreground color of the x and y axis sub-parts of the 2D Axis object may be specified in the
Axis2D app-defaults file as follows:

*Axis2D.xaxis.foreground: green
*Axis2D.yaxis.foreground: green

A.7. Syntax of the App-defaults File

Resources may be specified by the name of a specific instance of an object, by the class of the object, and by
application. The dot, ".", is used to give the full name of a specific instance of an object, and to divide applica-
tion names and class names from resource names. The wildcard symbol, "*", is used to simplify resource spec-
ifications. For a more detailed explanation of app-defaults file syntax, please see The X Toolkit Intrinsics Pro-
gramming Manual, by Adrian Nye and Tim O’Reilly; rather than providing an exhaustive description of syn-
tax specification, this section will use examples to illustrate the use of correct syntax in the app-defaults file.
Note that when a resource specification has incorrect syntax, it will simply be ignored; the X Toolkit does not
issue error messages when encountering incorrect specifications in app-defaults files.

To specify resources for an entire class of objects, the syntax:

*class_name.resource: value

is used. For example, if the Marker app-defaults file had the specification:

*Marker.graphicsMarkertype: 10

this would cause all marker objects to use the hexagon marker type.

To specify resources for a particular application, simply add the application name at the front of the specifica-
tion line, as in:

xprism*Marker.graphicsMarkertype: 8

This would over-ride the specification for the entire class of markers; thus, while all other markers would still
use the hexagon marker type, markers displayed by xpr ism would use the diamond marker type instead.

Resource specifications may be made by object name, when the object name is known. In general, the only
way to be sure of the name given to a specific instance of an object is to read the source code. By convention,
however, all Help, License, and Quit buttons in VisiQuest 2001 are named "help," "license," and "quit." There-
fore, you may specify the colors of these buttons for all applications using the wildcard specification followed
by the name of the button in the appropriate widget-specific app-defaults file, as in:

*help.background: forest green
*help.foreground: white

11-6

App-defaults Program Services Volume III - Chapter 11

*quit.background: #ad5b5b
*quit.foreground: white
*license.background: goldenrod
*license.foreground: white

Colors may be specified by name; valid color names may be found in /usr/lib/X11/rgb.txt. Alternatively, colors
may be specified in their hexadecimal RGB numbers (for example, #ffff00 is full red, full green, no blue, and
results in bright yellow).

When an object class has sub-parts (see Section A.4.3 above), the syntax:

*class_name.sub-part_name.resource: value

must be used. For example, in order to make the palettes of any pseudocolor objects appear using the color-
wheel palette type, the following specification would be made in the Pseudo app-defaults file:

*Pseudo.palette.paletteType: 3

Specifications of inherited resources for an object are made identically to specifications of class-specific
resources for the object, and will over-ride specifications made for the class for which the resource was inher-
ited. Suppose the String app-defaults file had the specification:

*String.stringEmphasize: false

This would cause string objects not to be emphasized. However, since the StringValue object is sub-classed
from the String object, you may specify a differing value for the stringEmphasize resource in the StringValue
app-defaults file, as in:

*StringValue.stringEmphasize: true

This would result in all stringvalue objects being emphasized, even though string objects would retain the
specification of no emphasis as given in the String app-defaults file. Again, resources for a particular applica-
tion may be specified differently if desired in the application specific app-defaults file, as in:

editimage*StringValue.stringEmphasize: false

This would cause stringvalue objects used by editimage not to be emphasized, although stringvalue objects in
the rest of the system would still be emphasized because of the resource specification in the StringValue app-
defaults file.

A.8. The Remainder of the Appendix

The remainder of this appendix gives excerpts from the predefined app-defaults files that are provided with
VisiQuest 2001 for the GUI and visual objects in the kwidgets, xvobjects, xvisual, and xvlang app-defaults
files. They are to be used as quick reference models for app-defaults files that you may create to define your
own preferences. Filename, inheritance, class-specific resources, and sub-parts of each object are listed, fol-
lowed by examples for settings of each class-specific resource for the object.

Comments in an app-defaults file are marked by an exclamation point ("!") in the first column of the file; you
will notice that all lines in the predefined app-defaults files are commented out. The reason for this is that the
predefined app-defaults files are not used to specify resources (the settings are all those that are the defaults
anyway), but rather to be used as a reference. Remember that it is very expensive to set resources, and use of
app-defaults files will result in increased startup time of an application.

11-7

App-defaults Program Services Volume III - Chapter 11

For additional details on the app-defaults file, you may also see The X Toolkit Intrinsics Programming Manual,
by Adrian Nye and Tim O’Reilly.

B. The Animate Object

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/Animate

Inheritance
manager -> graphics -> color -> image -> animate

Class-Specific Resources
animateUpdatetime
animateControl
animateDirection

Sub-Parts

The Animate object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_ANIMATE_UPDATETIME
! Time interval, in seconds, which will elapse before the animation object
! is updated with the next image in the sequence.
!
!*Animate.animateUpdatetime: 1.0

!
! Corresponding attribute: XVW_ANIMATE_CONTROL
! See manual for explanation. Values include:
! KANIMATE_CONTROL_LOOP 1
! KANIMATE_CONTROL_SINGLE 2
! KANIMATE_CONTROL_AUTOREVERSE 3
!
!*Animate.animateControl: 1

!
! Corresponding attribute: XVW_ANIMATE_DIRECTION
! See manual for explanation. Values include:
! KANIMATE_DIRECTION_STOP 1
! KANIMATE_DIRECTION_PREVIOUS 2
! KANIMATE_DIRECTION_NEXT 3
! KANIMATE_DIRECTION_REVERSE 4
! KANIMATE_DIRECTION_FORWARD 5
!
!*Animate.animateDirection: 1

11-8

App-defaults Program Services Volume III - Chapter 11

C. The Area Object

Generated From App-defaults file:
$ENVISION/objects/library/xvplot/app-defaults/Area

Inheritance
manager -> graphics -> area

Class-Specific Resources
areaDisplayTitle
areaDisplayDate

Sub-Parts

Sub-parts of the Area object include:
Area.date / date object,

displays date in area object */
Area.title / string object,

displays title in area object */
You may specify resources for sub-parts of the area object as desired.
See Date app-defaults file for resources that can be set on *Area.date,
See String app-defaults file for resources that can be set on *Area.title.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_AREA_DISPLAY_TITLE
! Whether or not the title is displayed in the area object.
!
!*Area.areaDisplayTitle: true

!
! Corresponding attribute: XVW_AREA_DISPLAY_DATE
! Whether or not the date is displayed in the area object.
!
!*Area.areaDisplayDate: true

D. The Axis Object

Generated From App-defaults file:
$ENVISION/objects/library/xvplot/app-defaults/Axis

Inheritance
manager -> graphics -> axis

11-9

App-defaults Program Services Volume III - Chapter 11

Class-Specific Resources
axisAxisMode
axisNumberMinorTics
axisTicJustification
axisShowAxis
axisShowAxisLabel
axisShowBox
axisShowMajorGrid
axisShowMinorGrid
axisShowNumericalLabel
axisShowTics
axisShowZeroLine
axisAxisColor
axisBoxColor
axisMajorGridColor
axisMinorGridColor
axisNumericalLabelsColor
axisMajorGridLineWidth
axisMinorGridLineWidth
axisMajorGridLineType
axisMinorGridLineType
axisNiceLabels

Sub-Parts

Sub-parts of the Axis object include:
Axis.label / string object,

displays label of axis object */
You may specify resources for sub-parts of the axis object as desired.
See String app-defaults file for resources that can be set on *Axis.label.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_AXIS_AXIS_MODE
! Specifies use of linear or log scaling:
! KAXIS_LINEAR = 1, KAXIS_LOG = 2
!
!*Axis.axisAxisMode: 1

!
! Corresponding attribute: XVW_AXIS_NUMBER_MINOR_TICS
! Specifies the number of minor tics to appear on the axis
!
!*Axis.axisNumberMinorTics: 0

!
! Corresponding attribute: XVW_AXIS_TIC_JUSTIFICATION
! Determines how the major and minor axis tic marks appear:
! to the inside of the axis line (KAXIS_INSIDE = 1)
! centered on the axis line (KAXIS_CENTERED = 2),
! to the outside of the axis line (KAXIS_OUTSIDE = 3)
!
!*Axis.axisTicJustification: 1

11-10

App-defaults Program Services Volume III - Chapter 11

!
! Corresponding attribute: XVW_AXIS_SHOW_AXIS
! Dictates whether or not the axis itself is displayed.
!
!*Axis.axisShowAxis: true

!
! Corresponding attribute: XVW_AXIS_SHOW_AXIS_LABEL
! Dictates whether or not the axis label is displayed.
!
!*Axis.axisShowAxisLabel: true

!
! Corresponding attribute: XVW_AXIS_SHOW_BOX
! Dictates whether or not the axis box will be displayed.
!
!*Axis.axisShowBox: true

!
! Corresponding attribute: XVW_AXIS_SHOW_MAJOR_GRID
! Dictates whether or not the major grid will be displayed.
!
!*Axis.axisShowMajorGrid: false

!
! Corresponding attribute: XVW_AXIS_SHOW_MAJOR_GRID
! Dictates whether or not the minor grid will be displayed.
!
!*Axis.axisShowMinorGrid: false

!
! Corresponding attribute: XVW_AXIS_SHOW_NUMERICAL_LABELS
! Dictates whether or not the numerical labels will be displayed.
!
!*Axis.axisShowNumericalLabel: true

!
! Corresponding attribute: XVW_AXIS_SHOW_TICS
! Dictates whether or not tic marks are displayed.
!
!*Axis.axisShowTics: true

!
! Corresponding attribute: XVW_AXIS_SHOW_ZERO_LINE
! Dictates whether or not zero line is displayed.
!
!*Axis.axisShowZeroLine: true

!
! Corresponding attribute: XVW_AXIS_AXIS_COLOR
! Name of color for axis
!
!*Axis.axisAxisColor: #00ff00

!
! Corresponding attribute: XVW_AXIS_BOX_COLOR

11-11

App-defaults Program Services Volume III - Chapter 11

! Name of color for axis
!
!*Axis.axisBoxColor: #00ff00

!
! Corresponding attribute: XVW_AXIS_MAJOR_GRID_COLOR
! Name of color for major grid
!
!*Axis.axisMajorGridColor: #00ff00

!
! Corresponding attribute: XVW_AXIS_MINOR_GRID_COLOR
! Name of color for minor grid
!
!*Axis.axisMinorGridColor: #00ff00

!
! Corresponding attribute: XVW_AXIS_NUMERICAL_LABELS_COLOR
! Name of color for numerical labels
!
!*Axis.axisNumericalLabelsColor: #00ff00

!
! Corresponding attribute: XVW_AXIS_MAJOR_GRID_LINE_WIDTH
! The line width with which the major grid is drawn:
! KLINE_EXTRA_FINE 1
! KLINE_FINE 2
! KLINE_MEDIUM_FINE 3
! KLINE_MEDIUM 4
! KLINE_MEDIUM_WIDE 5
! KLINE_WIDE 6
! KLINE_EXTRA_WIDE 7
!
!*Axis.axisMajorGridLineWidth: 3

!
! Corresponding attribute: XVW_AXIS_MINOR_GRID_LINE_WIDTH
! The line width with which the minor grid is drawn, see values
! for line widths given for axisMajorGridLineWidth, above.
!
!*Axis.axisMinorGridLineWidth: 1

!
! Corresponding attribute: XVW_AXIS_MAJOR_GRID_LINE_TYPE
! The line type with which the major grid is drawn:
! KLINE_SOLID 1
! KLINE_DOTTED 2
! KLINE_DOT_DASH 3
! KLINE_SHORT_DASH 4
! KLINE_LONG_DASH 5
! KLINE_ODD_DASH 6
! KLINE_GRID_DOTTED 7
!
!*Axis.axisMajorGridLineType: 2

!
! Corresponding attribute: XVW_AXIS_MINOR_GRID_LINE_TYPE
! The line type with which the minor grid is drawn, see values

11-12

App-defaults Program Services Volume III - Chapter 11

! for line types given for axisMajorGridLineType, above.
!
!*Axis.axisMinorGridLineType: 2

!
! Corresponding attribute: XVW_AXIS_NICE_LABELS
! See manual for description.
!
!*Axis.axisNiceLabels: false

E. The Axis2D Object

Generated From App-defaults file:
$ENVISION/objects/library/xvplot/app-defaults/Axis2D

Inheritance
manager -> graphics -> axis2D

Class-Specific Resources
axis2dShowAxisX
axis2dShowAxisY

Sub-Parts

Sub-parts of the 2D Axis object include:
Axis2D.xaxis / axis object,

serves as the X axis */
Axis2D.yaxis / axis object,

serves as the Y axis */
You may specify resources for sub-parts of the axis object as desired.
See Axis app-defaults file for resources that can be set on
*Axis2D.xaxis and *Axis2D.yaxis.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_AXIS2D_SHOW_AXIS_X
!
!*Axis2D.axis2dShowAxisX: true

!
! Corresponding attribute: XVW_AXIS2D_SHOW_AXIS_Y
!
!*Axis2D.axis2dShowAxisY: true

11-13

App-defaults Program Services Volume III - Chapter 11

F. The Browser Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Browser

Inheritance
manager -> browser

Class-Specific Resources
browserDirectory
browserFilter
browserDirectoryPixmapfile
browserAliasesPixmapfile
browserDestroyOnQuit

Sub-Parts

The Browser object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_BROWSER_DIRECTORY
! Directory from which the browser comes up, initially.
!
!*Browser.browserDirectory: "./"

! Corresponding attribute: XVW_BROWSER_FILTER
! Filter to be used with the list of files displayed by the browser.
!
!*Browser.browserFilter: "*.c"

! Corresponding attribute: XVW_BROWSER_DIRECTORY_PIXMAPFILE
! The pixmap that appears to the upper left of the browser object
! when the browser is in directory mode.
!
!*Browser.browserDirectoryPixmapfile: $DESIGN/objects/library/xvobjects/pixmaps/browse

! Corresponding attribute: XVW_BROWSER_ALIASES_PIXMAPFILE
! The pixmap that appears to the upper left of the browser object
! when the browser is in aliases mode.
!
!*Browser.browserAliasesPixmapfile: $DESIGN/objects/library/xvobjects/pixmaps/browser2

! Corresponding attribute: XVW_BROWSER_DESTROY_ON_QUIT
! Whether or not to destroy the browser object when the user selects
! a file or clicks on "Cancel".
!
!*Browser.browserDestroyOnQuit: true

11-14

App-defaults Program Services Volume III - Chapter 11

G. The Canvas Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Canvas

Inheritance
manager -> viewport -> canvas

Class-Specific Resources
canvasGrid
canvasGridsize

Sub-Parts

The Canvas object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_CANVAS_GRID
! Specify when a grid should be displayed on the canvas, allowed values:
!
! KMANAGER_GRID_OFF 0: grid is always off.
! KMANAGER_GRID_ON 1: grid is always on.
! KMANAGER_GRID_EDIT 2: grid is only on when the canvas is in "edit mode"
! KMANAGER_GRID_SELECT 3: grid is only displayed when a child of the
| canvas has been selected by the user
!
!*Canvas.canvasGrid: 1

!
! Corresponding attribute: XVW_CANVAS_GRIDSIZE
! The size (in pixels) of the canvas grid
!
!*Canvas.canvasGridsize: 20

!
! Corresponding attribute: XVW_VP_ALLOW_HORIZ
! (Setting resource on *Canvas.viewport sub-part)
! Allow horizontal scrollbar?
!
!*Canvas.viewport.vpAllowHoriz: true

!
! Corresponding attribute: XVW_VP_ALLOW_VERT on viewport sub-part
! (Setting resource on *Canvas.viewport sub-part)
! Allow vertical scrollbar?
!
!*Canvas.viewport.vpAllowVert: true

!
! Corresponding attribute: XVW_VP_FORCE_HORIZ on viewport sub-part
! (Setting resource on *Canvas.viewport sub-part)

11-15

App-defaults Program Services Volume III - Chapter 11

! Insist on horizontal scrollbar (whether or not it is needed)?
!
!*Canvas.viewport.force_horizontal: true

!
! Corresponding attribute: XVW_VP_FORCE_VERT on viewport sub-part
! (Setting resource on *Canvas.viewport sub-part)
! Insist on vertical scrollbar (whether or not it is needed)?
!
!*Canvas.viewport.force_vertical: true

H. The Circle Object

Generated From App-defaults file:
$ENVISION/objects/library/xvannotate/app-defaults/Circle

Inheritance
manager -> graphics -> circle

Class-Specific Resources
none

Sub-Parts

The Circle object has no sub-parts.

I. The Color Object

Generated From App-defaults file:
$DESIGN/objects/library/xvisual/app-defaults/Color

Inheritance
manager -> graphics -> color

Class-Specific Resources
colorNormType
colorNormUbyte
colorNormMethod
colorPrivateCmap

11-16

App-defaults Program Services Volume III - Chapter 11

Sub-Parts

The Color class (a class, not an object) has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_COLOR_NORM_TYPE
! See manual for explanation. Values include:
! KCOLOR_NORM_GLOBAL 1
! KCOLOR_NORM_LOCAL 2
!
!*colorNormType: 2

!
! Corresponding attribute: XVW_COLOR_NORM_UBYTE
! Specifies whether unsigned byte data should be normalized.
!
!*colorNormUbyte: true

!
! Corresponding attribute: XVW_COLOR_NORM_METHOD
! See manual for explanation. Values include:
! KCOLOR_NORM_MAXCOLORS 1
! KCOLOR_NORM_1STDDEV 2
! KCOLOR_NORM_2STDDEV 3
! KCOLOR_NORM_3STDDEV 4
!
!*colorNormMethod: 1

!
! Corresponding attribute: XVW_COLOR_PRIVATE_CMAP
! See manual for explanation.
!
!*colorPrivateCmap: false

J. The ColorCell Object

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/ColorCell

Inheritance
manager -> graphics -> color -> colorcell

Class-Specific Resources
colorcellShowindex
colorcellUpdateOnadd
colorcellRestoreOndelete

11-17

App-defaults Program Services Volume III - Chapter 11

Sub-Parts

Sub-parts of the ColorCell object include:
ColorCell.value / stringvalue object,

displyas the pixel value */

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_COLORCELL_SHOWINDEX
! Specifies whether pixel value associated with colorcell is to be displayed.
!
!*ColorCell.colorcellShowindex: true

!
! Corresponding attribute: XVW_COLORCELL_UPDATE_ONADD
! See manual for explanation.
!
!*ColorCell.colorcellUpdateOnadd: false

!
! Corresponding attribute: XVW_COLORCELL_RESTORE_ONDELETE
! See manual for explanation.
!
!*ColorCell.colorcellRestoreOndelete: false

K. The Connection Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Connection

Inheritance
manager -> connection

Class-Specific Resources
connectionType
connectionLinewidth
connectionUpdatetime

Sub-Parts

The Connection object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_CONNECTION_TYPE
! Specify connection type of connection object, choices include:
!

11-18

App-defaults Program Services Volume III - Chapter 11

! KCONNECTION_TYPE_LINEAR 1
! KCONNECTION_TYPE_MANHATTAN 2
! KCONNECTION_TYPE_SPLINE 3
! KCONNECTION_TYPE_HEXAGON 4
! KCONNECTION_TYPE_DIAMOND 5
!
!*Connection*connectionType: 2

!
! Corresponding attribute: XVW_CONNECTION_UPDATETIME
! Specify update time of connection object
!
*Connection*connectionUpdatetime: 0.05

!
! Corresponding attribute: XVW_CONNECTION_LINEWIDTH
! Specify line width of connection object, choices include:
! KCONNECTION_LINE_EXTRA_FINE 0
! KCONNECTION_LINE_FINE 1
! KCONNECTION_LINE_MEDIUM_FINE 2
! KCONNECTION_LINE_MEDIUM 3
! KCONNECTION_LINE_MEDIUM_WIDE 4
! KCONNECTION_LINE_WIDE 5
! KCONNECTION_LINE_EXTRA_WIDE 6
!
!*Connection*connectionLinewidth: 2

!
! Corresponding attribute: XVW_FOREGROUND & XVW_BACKGROUND
! (Setting inherited resources)
! Specify foreground & background of connection object
!
!*Connection*foreground: #ffff00
!*Connection*background: #000000

L. The Console Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Console

Inheritance
manager -> viewport -> textdisplay -> console

Class-Specific Resources
none

Sub-Parts

The Console object has no sub-parts.

11-19

App-defaults Program Services Volume III - Chapter 11

M. The Date Object

Generated From App-defaults file:
$ENVISION/objects/library/xvannotate/app-defaults/Date

Inheritance
manager -> graphics -> string -> date

Class-Specific Resources
dateUpdatetime
dateFormat

Sub-Parts

The Date object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_DATE_UPDATETIME
! How often, in seconds, that the date is updated
!
!*Date.dateUpdatetime: 1

!
! Corresponding attribute: XVW_DATE_FORMAT
! The format in which to display the date
!
!*Date.dateFormat: "%h %d, 19%y %H:%M"

N. The Double Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Double

Inheritance
manager -> double

Class-Specific Resources
none

Sub-Parts

Sub-parts of the Double object include:
Double.label / labelstring object,

11-20

App-defaults Program Services Volume III - Chapter 11

displays label of double object */
Double.text / text object,

provides parameter box in which user enters value */
Double.cr_pixmap / pixmap object,

indicates a "live" selection */
Double.scrollbar / scrollbar object,

which user can use to change value */
You may specify resources for sub-parts of the double object as desired.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_PIXMAP_FILENAME
! (setting resource on *Double.cr_pixmap sub-part)
! Specify pixmap to appear in upper left hand corner of double object
!
!*Double.cr_pixmap.pixmapFilename: pixmaps:lightning

!
! Corresponding attributes: XVW_FOREGROUND, XVW_BACKGROUND, XVW_FONTNAME
! (setting resources on *Double.label sub-part)
! Specify foreground color & font for label
!
!*Double.label.foreground: #000000
!*Double.label.labelEmphasize: 0
!*Double.label.fontName: fixed

!
! Corresponding attributes: XVW_FOREGROUND, XVW_BACKGROUND, and XVW_FONTNAME
! (setting resources on *Double.text sub-part)
! Specify foreground, background color & font for text
!
!*Double.text.foreground: #000000
!*Double.text.background: #979797
!*Double.text.fontName: fixed
!*Double.text.fontList: fixed

O. The Error Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Error

Inheritance
manager -> error

Class-Specific Resources
errorPixmapfile

Sub-Parts

11-21

App-defaults Program Services Volume III - Chapter 11

Sub-parts of the Error object include:
Error.pixmap / pixmap object,

decoration at upper left hand corner of Error object */
Error.text / text object,

displays error message */
Error.button / button object,

acknowledgement button */
Error.label / label object,

label at top of error object */
You may specify resources for sub-parts of the error object as desired.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_ERROR_PIXMAPFILE
! Specify pixmap to appear in upper left hand corner of error object
!
!*Error*errorPixmapfile: $DESIGN/objects/library/xvobjects/pixmaps/stopsign.xpm

!
! Corresponding attribute: XVW_FOREGROUND, XVW_FONTNAME
! (Setting resources on *Error.label sub-part)
! Specify foreground color & font for label of error object
!
!*Error.label.foreground: #000000
!*Error.label.fontName: fixed
!*Error.label.fontList: fixed

!
! Corresponding attribute: XVW_FOREGROUND, XVW_BACKGROUND, XVW_FONTNAME
! (Setting resources on *Error.button sub-part)
! Specify foreground, background color & font for button of error object
!
!*Error.button.foreground: #ffffff
!*Error.button.background: #ff0000
!*Error.button.fontName: fixed
!*Error.button.fontList: fixed

! Corresponding attribute: XVW_FOREGROUND, XVW_FONTNAME
! (Setting resources on *Error.text sub-part)
! Specify foreground & font for text of error object
!
!*Error.text.foreground: #000000
!*Error.text.fontName: fixed
!*Error.text.fontList: fixed

P. The Float Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Float

11-22

App-defaults Program Services Volume III - Chapter 11

Inheritance
manager -> float

Class-Specific Resources
none

Sub-Parts

Sub-parts of the Float object include:
Float.label / labelstring object,

label at left of float object */
Float.text / text object,

provides parameter box in which user enters value */
Float.cr_pixmap / pixmap object,

indicating a "live" selection */
Float.scrollbar / scrollbar object,

which user can use to change value */
You may specify resources for sub-parts of the float object as desired.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_PIXMAP_FILENAME
! (Setting resources on *Float.cr_pixmap sub-part)
! Specify pixmap to appear in upper left hand corner of float object
!
!*Float.cr_pixmap.pixmapFilename: pixmaps:lightning

!
! Corresponding attribute: XVW_FOREGROUND, XVW_LABEL_EMPHASIZE, XVW_FONTNAME
! (Setting resources on *Float.label sub-part)
! Specify foreground color & font for label of float object
!
!*Float.label.foreground: #000000
!*Float.label.labelEmphasize: 0
!*Float.label.fontName: fixed

!
! Corresponding attribute: XVW_FOREGROUND, XVW_BACKGROUND, XVW_FONTNAME
! (Setting resources on *Float.text sub-part)
! Specify foreground, background color & font for button of float object
!
!*Float.text.foreground: #000000
!*Float.text.background: #979797
!*Float.text.fontName: fixed
!*Float.text.fontList: fixed

11-23

App-defaults Program Services Volume III - Chapter 11

Q. The Help Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Help

Inheritance
manager -> help

Class-Specific Resources
helpDisplaytitle
helpDisplayquit
helpDisplaymenu
helpDestroyOnQuit
helpMoreFiles

Sub-Parts

Sub-parts of the Help object include:
Help.quit / button object,

quit button on help object */
Help.title / label object,

displays label of help object */
Help.next / button object,

"next" button on help object */
Help.previous / button object,

"previous" button on help object */
Help.name / button object,

"name" button on help object */
Help.textdisplay / textdisplay object,

used to display text */
You may specify resources for sub-parts of the help object as desired.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_HELP_DISPLAYTITLE
! When set to false, this will suppress display of the title
!
!*Help.helpDisplaytitle: true

!
! Corresponding attribute: XVW_HELP_DISPLAYQUIT
! When set to false, this will suppress display of the quit button
!
!*Help.helpDisplayquit: true

!
! Corresponding attribute: XVW_HELP_DISPLAYMENU
! When set to false, this will suppress display of the options menu button
!
!*Help.helpDisplaymenu: true

!

11-24

App-defaults Program Services Volume III - Chapter 11

! Corresponding attribute: XVW_HELP_DESTROY_ON_QUIT
! When set to false, this will cause the help object to be unmapped
! when the user clicks on the "Quit" button, rather than being destroyed
!
!*Help.helpDestroyOnQuit: true

!
! Corresponding attribute: XVW_HELP_MORE_FILES
! When set to false, help object will not stat the directory in order
! build the list of files included in the "Other Files" submenu
!
!*Help.helpMoreFiles: false

R. The Image Object

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/Image

Inheritance
manager -> graphics -> color -> image

Class-Specific Resources
imageXoffset
imageYoffset
imageBacking
imageRoiShape
imageRoiPolicy
imageRoiPresentation
imageRoiMultiband
imageRoiMultiple
imageComplexConvert

Sub-Parts

The Image object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_IMAGE_XOFFSET
! See manual for explanation.
!
!*Image.imageXoffset: -1

!
! Corresponding attribute: XVW_IMAGE_YOFFSET
! See manual for explanation.
!
!*Image.imageYoffset: -1

11-25

App-defaults Program Services Volume III - Chapter 11

!
! Corresponding attribute: XVW_IMAGE_BACKING
! See manual for explanation.
!
!*Image.imageBacking: true

!
! Corresponding attribute: XVW_IMAGE_ROI_SHAPE
! See manual for explanation; values include:
! KIMAGE_ROI_RECTANGLE 1
! KIMAGE_ROI_POLYLINE 2
! KIMAGE_ROI_CIRCLE 3
! KIMAGE_ROI_ELLIPSE 4
! KIMAGE_ROI_LINE 5
! KIMAGE_ROI_FREEHAND 6
! KIMAGE_ROI_CURVE 7
!
!*Image.imageRoiShape: 1

!
! Corresponding attribute: XVW_IMAGE_ROI_POLICY
! See manual for explanation; values include:
! KIMAGE_ROI_INSIDE 1
! KIMAGE_ROI_OUTLINE 2
! KIMAGE_ROI_OUTSIDE 3
!
!*Image.imageRoiPolicy: 1

!
! Corresponding attribute: XVW_IMAGE_ROI_PRESENTATION
! See manual for explanation; values include:
! KIMAGE_ROI_SIGNAL 1
! KIMAGE_ROI_IMAGE 2
! KIMAGE_ROI_SURFACE 3
!
!*Image.imageRoiPresentation: 2

!
! Corresponding attribute: XVW_IMAGE_ROI_MULTIBAND
! See manual for explanation.
!
!*Image.imageRoiMultiband: true

!
! Corresponding attribute: XVW_IMAGE_ROI_MULTIPLE
! See manual for explanation.
!
!*Image.imageRoiMultiple: false

!
! Corresponding attribute: XVW_IMAGE_COMPLEX_CONVERT
! See manual for explanation; values include:
! KREAL 1
! KIMAGINARY 2
! KPHASE 3
! KMAGNITUDE 4
! KLOGMAGP1 5
! KLOGMAG 6
! KLOGMAGSQP1 7

11-26

App-defaults Program Services Volume III - Chapter 11

! KLOGMAGSQ 8
! KMAGSQ 9
!
!*Image.imageComplexConvert: 5

!
! Corresponding attribute: XVW_MAXIMUM_WIDTH and XVW_MAXIMUM_HEIGHT
! This sets the maximum width and height of the image.
!
!*Image.maximumWidth: 1000
!*Image.maximumHeight: 1000

S. The ImageIcon Object

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/ImageIcon

Inheritance
manager -> graphics -> color -> image -> imageicon

Class-Specific Resources
imageiconSize

Sub-Parts

The ImageIcon object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_IMAGEICON_SIZE
! The size of the icon in pixels.
!
!*ImageIcon.imageiconSize: 100

T. The Indicator Object

Generated From App-defaults file:
$ENVISION/objects/library/xvplot/app-defaults/Indicator

Inheritance
manager -> graphics -> marker -> indicator

11-27

App-defaults Program Services Volume III - Chapter 11

Class-Specific Resources
indicatorConstraint
indicatorLine
indicatorShowXpos
indicatorShowYpos

Sub-Parts

The sub-parts of the Indicator object include:
Indicator.xpos / stringvalue object,

displays x position of indicator */
Indicator.ypos / stringvalue object,

displays y position of indicator */
Indicator.xline / line object,

displays horizontal line for indicator */
Indicator.yline / line object,

displays vertical line for indicator */
You may specify resources for sub-parts of the indicator object as desired.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_INDICATOR_CONSTRAINT
! See manual for explanation; values include:
! KINDICATOR_CONSTRAINT_NONE 0
! KINDICATOR_CONSTRAINT_X 1
! KINDICATOR_CONSTRAINT_Y 2
!
!*Indicator.indicatorConstraint: 0

!
! Corresponding attribute: XVW_INDICATOR_LINE
! Indicates whether a line should be displayed; values include:
! #define KINDICATOR_LINE_NONE 0
! #define KINDICATOR_LINE_VERTICAL 1
! #define KINDICATOR_LINE_HORIZONTAL 2
! #define KINDICATOR_LINE_BOTH 3
!
!*Indicator.indicatorLine: 0

!
! Corresponding attribute: XVW_INDICATOR_SHOW_XPOS
! Iindicates whether the X position value should be displayed.
!
!*Indicator.indicatorShowXpos: true

!
! Corresponding attribute: XVW_INDICATOR_SHOW_YPOS
! Iindicates whether the Y position value should be displayed.
!
!*Indicator.indicatorShowYpos: true

11-28

App-defaults Program Services Volume III - Chapter 11

U. The Info Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Info

Inheritance
manager -> info

Class-Specific Resources
infoPixmapfile

Sub-Parts

Sub-parts of the Info object include:
Info.pixmap / pixmap object,

decorates upper left hand corner of Info object */
Info.text / text object,

displays info message */
Info.button / button object,

acknowledgement button */
Info.label / label object,

label at top of info object */
You may specify resources for sub-parts of the info object as desired.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_INFO_PIXMAPFILE
! Specify pixmap to appear in upper left hand corner of info object
!
!*Info*infoPixmapfile: $DESIGN/objects/library/xvobjects/pixmaps/info.xpm

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_FONTNAME
! (Setting resources on *Info.label sub-part)
! Specify foreground color & font for label of info object
!
!*Info.label.foreground: #000000
!*Info.label.fontName: fixed
!*Info.label.fontList: fixed

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_BACKGROUND, XVW_FONTNAME
! (Setting resources on *Info.button sub-part)
! Specify foreground, background color & font for button of info object
!
!*Info.button.foreground: #000000
!*Info.button.background: #ffff00
!*Info.button.fontName: fixed
!*Info.button.fontList: fixed

!

11-29

App-defaults Program Services Volume III - Chapter 11

! Corresponding Attribute: XVW_FOREGROUND & XVW_FONTNAME
! (Setting resources on *Info.text sub-part)
! Specify foreground, background color & font for text of info object
!
!*Info.text.foreground: #000000
!*Info.text.fontName: fixed
!*Info.text.fontList: fixed

V. The InputFile Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/InputFile

Inheritance
manager -> inputfile

Class-Specific Resources
none

Sub-Parts

Sub-parts of the InputFile object include:
InputFile.cr_pixmap / pixmap object,

represents a "live" selection */
InputFile.text / text object,

parameter box in which user enters value */
InputFile.button / button object,

displays label & brings up file browser */
You may specify resources for sub-parts of the inputfile object as desired.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_PIXMAP_FILENAME
! (Setting resources on *InputFile.cr_pixmap sub-part)
! Specify pixmap to appear in upper left hand corner of inputfile object
!
!*InputFile.cr_pixmap.pixmapFilename: pixmaps:lightning

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_FONTNAME
! (Setting resources on *InputFile.button sub-part)
! Specify foreground & background color for button of inputfile object
!
!*InputFile.button.foreground: #000000
!*InputFile.button.fontName: fixed
!*InputFile.button.fontList: fixed

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_BACKGROUND, XVW_FONTNAME

11-30

App-defaults Program Services Volume III - Chapter 11

! (Setting resources on *InputFile.text sub-part)
! Specify foreground, background color & font for button of inputfile object
!
!*InputFile.text.foreground: #000000
!*InputFile.text.background: #979797
!*InputFile.text.fontName: fixed
!*InputFile.text.fontList: fixed

W. The InputOnly Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/InputOnly

Inheritance
core -> inputonly

Class-Specific Resources
none

Sub-Parts

The InputOnly object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_CURSORNAME
! The "Busy" inputonly object that is created specially by "xvw_busy()"
! needs to have a special cursor to tell the user that the window is "busy".
! Note that this cursor is NOT used by ALL InputOnly objects, only by the
! Busy inputonly object. If we wanted to specify the cursor for all
! inputonly objects, we would use "*InputOnly*cursor" instead.
!
*Busy*cursorName: $DESIGN/repos/bitmaps/cursors/zen

X. The Integer Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Integer

Inheritance
manager -> integer

11-31

App-defaults Program Services Volume III - Chapter 11

Class-Specific Resources
none

Sub-Parts

Sub-parts of the Integer object include:
Integer.label / labelstring object,

label on left of integer object */
Integer.text / text object,

parameter box in which user enters value */
Integer.cr_pixmap / pixmap object,

indicates a "live" selection */
Integer.scrollbar / scrollbar object,

which user can use to change value */
You may specify resources for sub-parts of the integer object as desired.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_PIXMAP_FILENAME
! (Setting resources on *Integer.cr_pixmap sub-part)
! Specify pixmap to appear in upper left hand corner of integer object
!
!*Integer.cr_pixmap.pixmapFilename: pixmaps:lightning

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_LABEL_EMPHASIZE, XVW_FONTNAME
! (Setting resources on *Integer.label sub-part)
! Specify foreground color & font for label of integer object
!
!*Integer.label.foreground: #000000
!*Integer.label.labelEmphasize: 0
!*Integer.label.fontName: fixed
!*Integer.label.fontList: fixed

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_BACKGROUND, XVW_FONTNAME
! (Setting resources on *Integer.text sub-part)
! Specify foreground, background color & font for button of integer object
!
!*Integer.text.foreground: #000000
!*Integer.text.background: #979797
!*Integer.text.fontName: fixed
!*Integer.text.fontList: fixed

Y. The Label Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Label

11-32

App-defaults Program Services Volume III - Chapter 11

Inheritance
manager -> label

Class-Specific Resources
labelFilled
labelEmphasize
forceRedisplay

Sub-Parts

The LabelString object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_LABEL_FILLED
! Set to true, this attribute causes the background of the
| labelstring to filled with the background color.
!
!*Label.labelFilled: false

!
! Corresponding Attribute: XVW_LABEL_EMPHASIZE
! Set to true, this attribute causes the label to be drawn twice,
! giving it a 3D, emphasized effect.
!
!*Label.labelEmphasize: false

!
! Corresponding Attribute: XVW_FORCE_REDISPLAY
! Set to true, this attribute used by the labelstring object to achieve
! smoother, faster update of the label.
!
!*Label.forceRedisplay: false

Z. The Layout Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Layout

Inheritance
manager -> layout

Class-Specific Resources
layoutNumberAcross
layoutBufferSize
layoutBorderSize
layoutAreaJustification

11-33

App-defaults Program Services Volume III - Chapter 11

Sub-Parts

The Layout object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_LAYOUT_NUMBER_ACROSS
! Number of child objects to lay out in one row
!
!*Layout.layoutNumberAcross: 1

!
! Corresponding Attribute: XVW_LAYOUT_BUFFER_SIZE
! Distance between child objects in pixels
!
!*Layout.layoutBufferSize:5

!
! Corresponding Attribute: XVW_LAYOUT_BORDER_SIZE
! Line width of border of currently selected child
!
!*Layout.layoutBorderSize: 2

!
! Corresponding Attribute: XVW_LAYOUT_AREA_JUSTIFICATION
! How the last row of child objects is laid out, values:
! KLAYOUT_AREA_CENTER - 1
! KLAYOUT_AREA_RIGHT - 2
! KLAYOUT_AREA_LEFT - 3
! KLAYOUT_AREA_FULL - 4
!
!*Layout.layoutAreaJustification: 1

AA. The Line Object

Generated From App-defaults file:
$ENVISION/objects/library/xvannotate/app-defaults/Line

Inheritance
manager -> graphics -> line

Class-Specific Resources
none

Sub-Parts

The Line object has no sub-parts.

11-34

App-defaults Program Services Volume III - Chapter 11

AB. The Marker Object

Generated From App-defaults file:
$ENVISION/objects/library/xvannotate/app-defaults/Marker

Inheritance
manager -> graphics -> marker

Class-Specific Resources
none

Sub-Parts

The Marker object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_GRAPHICS_MARKERTYPE
! (setting inherited resource)
! The marker type; values include:
! KMARKER_NONE 0
! KMARKER_ARC 1
! KMARKER_BOW_TIE 2
! KMARKER_BOX 3
! KMARKER_CARET 4
! KMARKER_CIRCLE 5
! KMARKER_CROSS 6
! KMARKER_DAGGER 7
! KMARKER_DIAMOND 8
! KMARKER_DOT 9
! KMARKER_HEXAGON 10
! KMARKER_POINT 11
! KMARKER_SQUARE 12
! KMARKER_TRIANGLE 13
! KMARKER_V 14
! KMARKER_X 15
!
!*Marker.graphicsMarkertype: 12

AC. The NotifyWindow Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/NotifyWindow

11-35

App-defaults Program Services Volume III - Chapter 11

Inheritance
manager -> notifywindow

Class-Specific Resources
notifywindowTitle
notifywindowLabel
notifywindowPixmapfile

Sub-Parts

Sub-parts of the NotifyWindow object include:
NotifyWindow.pixmap / pixmap object,

decorates upper left hand corner */
NotifyWindow.label / labelstring object,

label at top of notifywindow object */
NotifyWindow.text / labelstring object,

displays message */
You may specify resources for sub-parts of notifywindow object as desired.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_NOTIFYWINDOW_PIXMAPFILE
! Specify pixmap to appear in upper left hand corner of notifywindow object
! *NotifyWindow*notifywindowPixmapfile: $DESIGN/objects/library/xvobjects/pixmaps/noti

!
! Corresponding Attribute: XVW_NOTIFYWINDOW_TITLE
! Specify title to appear in titlebar of notifywindow object
! (note: this is usually not set in the app-defaults file, but by the
! application, with the name of the application using the notifywindow)
!
!*NotifyWindow*notifywindowTitle: "Notification"

!
! Corresponding Attribute: XVW_NOTIFYWINDOW_LABEL
! Specify label to appear at top of notifywindow object
!
!*NotifyWindow*notifywindowLabel: "Working..."

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_BACKGROUND, XVW_FONTNAME,
! XVW_LABEL_EMPHASIZE
! (Setting resources on *NotifyWindow.label sub-part)
! Specify foreground color & font for label of notifywindow object
!
*NotifyWindow.label.labelEmphasize: false
*NotifyWindow.label.foreground: #000000
*NotifyWindow.label.fontName: variable

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_BACKGROUND, XVW_FONTNAME,
! XVW_LABEL_EMPHASIZE
! (Setting resources on *NotifyWindow.text sub-part)
! Specify foreground, background color & font for text of notifywindow object
!

11-36

App-defaults Program Services Volume III - Chapter 11

*NotifyWindow.text.foreground: #000000
*NotifyWindow.text.fontName: variable
*NotifyWindow.text.labelEmphasize: false

AD. The OutputFile Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/OutputFile

Inheritance
manager -> outputfile

Class-Specific Resources
none

Sub-Parts

Sub-parts of the OutputFile object include:
OutputFile.cr_pixmap / pixmap object,

indicates a "live" selection */
OutputFile.text / text object,

text parameter box in which user enters value */
OutputFile.button / button object,

displays label & brings up file browser */
You may specify resources for sub-parts of the outputfile object as desired.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_PIXMAP_FILENAME
! (Setting resource on *OutputFile.cr_pixmap sub-part)
! Specify pixmap to appear in upper left hand corner of outputfile object
!
!*OutputFile.cr_pixmap.pixmapFilename: pixmaps:lightning

!
! Corresponding Attribute: XVW_FOREGROUND, BACKGROUND, XVW_FONTNAME
! (Setting resource on *OutputFile.button sub-part)
! Specify foreground color & font for button of outputfile object
!
!*OutputFile.button.foreground: #000000
!*OutputFile.button.background: #ffffff
!*Outputfile.button.fontName: fixed
!*OutputFile.button.fontList: fixed

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_BACKGROUND, XVW_FONTNAME
! (Setting resource on *OutputFile.text sub-part)
! Specify foreground, background color & font for button of outputfile object
!

11-37

App-defaults Program Services Volume III - Chapter 11

!*OutputFile.text.foreground: #000000
!*OutputFile.text.background: #979797
!*OutputFile.text.fontName: fixed
!*OutputFile.text.fontList: fixed

AE. The Palette Object

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/Palette

Inheritance
manager -> graphics -> color -> palette

Class-Specific Resources
paletteType

Sub-Parts

The Palette object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_PALETTE_TYPE
! The palette type, one of:
! KPALETTE_TYPE_COLORBAR 1
! KPALETTE_TYPE_COLORCELL 2
! KPALETTE_TYPE_COLORWHEEL 3
!
!*Palette.paletteType: 1

AF. The PanIcon Object

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/PanIcon

Inheritance
manager -> graphics -> color -> image -> panicon

Class-Specific Resources
paniconSize

11-38

App-defaults Program Services Volume III - Chapter 11

Sub-Parts

The PanIcon object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_PANICON_SIZE
! Desired physical size of pan icon, in pixels. Note that the actual size of
! the pan icon may be automatically modified to preserve proportionality in
! the event that a non-square image is displayed.
!
!*PanIcon.paniconSize: 100

11-39

App-defaults Program Services Volume III - Chapter 11

AG. The Pixmap Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Pixmap

Inheritance
manager -> pixmap

Class-Specific Resources
pixmapFilename
pixmapMaskname

Sub-Parts

The Pixmap object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_PIXMAP_FILENAME
! Name of file defining the desired pixmap
!
!*Pixmap*pixmapFilename: $TOOLBOX/...../filename.xpm

!
! Corresponding Attribute: XVW_PIXMAP_MASKNAME
! Name of file defining the desired mask for the pixmap
!
!*Pixmap*pixmapMaskname: $TOOLBOX/......./filename.xpm

AH. The Plot2D Object

Generated From App-defaults file:
$ENVISION/objects/library/xvplot/app-defaults/Plot2D

Inheritance
manager -> graphics -> color -> plot2D

Class-Specific Resources
plot2DPlotType

Sub-Parts

The Plot2D object has no sub-parts.

11-40

App-defaults Program Services Volume III - Chapter 11

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_PLOT2D_PLOTTYPE
! Plot type; one of:
! KPLOT2D_LINEPLOT 1
! KPLOT2D_DISCRETE 2
! KPLOT2D_BARGRAPH 3
! KPLOT2D_POLYMARKER 4
! KPLOT2D_LINEMARKER 5
! KPLOT2D_COLORMARKER 6
!
!*Plot2D.plot2DPlotType: 1

AI. The Plot3D Object

Generated From App-defaults file:
$ENVISION/objects/library/xvplot/app-defaults/Plot3D

Inheritance
manager -> graphics -> color -> plot3D

Class-Specific Resources
plot3DPlotType
plot3DShadeType

Sub-Parts

The Plot3D object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_PLOT3D_PLOTTYPE
! Plot type; one of:
! KPLOT3D_LINEPLOT 20
! KPLOT3D_WIREFRAME 21
! KPLOT3D_MESH 22
! KPLOT3D_COLORMESH 23
! KPLOT3D_HORIZON 24
! KPLOT3D_SCATTER 25
! KPLOT3D_IMPULSE 26
! KPLOT3D_CONTOUR_2D 27
! KPLOT3D_CONTOUR_3D 28
! KPLOT3D_CONSTANT_SHADING 29
! KPLOT3D_PHONG_SHADING 30
! KPLOT3D_GHOURAUD_SHADING 31
! KPLOT3D_3D_BEZIER 32
! KPLOT3D_SURFACE_BEZIER 33
! KPLOT3D_RENDERED_BEZIER 34
!
!*Plot3D.plot3DPlotType: 20

11-41

App-defaults Program Services Volume III - Chapter 11

! Corresponding attribute: XVW_PLOT3D_SHADETYPE
! Plot type; one of:
! KPLOT3D_SHADE_IMAGERY 1
! KPLOT3D_SHADE_ELEVATION 2
! KPLOT3D_SHADE_NORMAL 3
!
!*Plot3D.plot3DShadeType: 2

AJ. The Polyline Object

Generated From App-defaults file:
$ENVISION/objects/library/xvannotate/app-defaults/Polyline

Inheritance
manager -> graphics -> polyline

Class-Specific Resources
none

Sub-Parts

The Polyline object has no sub-parts.

AK. The Position Object

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/Position

Inheritance
manager -> graphics -> string -> position

Class-Specific Resources
positionShowValue
positionUpdatemode

Sub-Parts

The Position object has no sub-parts.

11-42

App-defaults Program Services Volume III - Chapter 11

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_POSITION_SHOW_VALUE
! If TRUE, the position object will display information in
! (X x Y = Z) format, where X and Y display the location of the
! pointer in the data object, and Z is the pixel value at that
! location. If FALSE, the position object will simply display
! (X x Y) location information; the pixel value will be omitted.
!
!*Position.positionShowValue: true

! Corresponding attribute: XVW_POSITION_UPDATEMODE
! Whether position object is updated on continuous motion or button press.
! Values include:
! KPOSITION_UM_CONTINUOUS 0
! KPOSITION_UM_BUTTON_PRESS 1
!
!*Position.positionUpdatemode: 0
*Position*foreground: black

AL. The PrintMapVal Object

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/PrintMapVal

Inheritance
manager -> graphics -> color -> printmapval

Class-Specific Resources
printmapvalWidth
printmapvalHeight
printmapvalShowcolor
printmapvalUpdatemode
printmapvalPolicy

Sub-Parts

The PrintMapVal object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_PRINTMAPVAL_WIDTH
! The number of map column values that should be displayed in a
! horizontal direction on the printmapval display.
!
!*PrintMapVal.printmapvalWidth: 8

! Corresponding attribute: XVW_PRINTMAPVAL_HEIGHT
! The number of map column values that should be displayed in a

11-43

App-defaults Program Services Volume III - Chapter 11

! vertical direction on the printmapval display.
!
!*PrintMapVal.printmapvalHeight: 8

! Corresponding attribute: XVW_PRINTMAPVAL_SHOWCOLOR
! Whether or not the color of the pixel under the pointer should be
! used as the background color for the label object in which the map values
! are displayed.
!
!*PrintMapVal.printmapvalShowcolor: false

! Corresponding attribute: XVW_PRINTMAPVAL_UPDATEMODE
! Whether printmapval object is updated on pointer motion or button press,
! values include:
! KPRINTMAPVAL_UM_CONTINUOUS 0
! KPRINTMAPVAL_UM_BUTTON_PRESS 1
!
!*PrintMapVal.printmapvalUpdatemode: false

! Corresponding attribute: XVW_PRINTMAPVAL_POLICY
! See manual for description, values include:
! KPRINTMAPVAL_DISPLAYEDVALUES 1
! KPRINTMAPVAL_MAPDATAVALUES 2
!
!*PrintMapVal.printmapvalPolicy: 1

AM. The PrintPixel Object

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/PrintPixel

Inheritance
manager -> graphics -> color -> printpixel

Class-Specific Resources
printpixelWidth
printpixelHeight
printpixelShowcolor
printpixelUpdatemode

Sub-Parts

The PrintPixel object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_PRINTPIXEL_WIDTH
! The number of map column values that should be displayed in a
! horizontal direction on the printpixel display.

11-44

App-defaults Program Services Volume III - Chapter 11

!
!*PrintPixel.printpixelWidth: 8

! Corresponding attribute: XVW_PRINTPIXEL_HEIGHT
! The number of map column values that should be displayed in a
! vertical direction on the printpixel display.
!
!*PrintPixel.printpixelHeight: 8

! Corresponding attribute: XVW_PRINTPIXEL_SHOWCOLOR
! Whether or not the color of the pixel under the pointer should be
! used as the background color for the label object in which the map values
! are displayed.
!
!*PrintPixel.printpixelShowcolor: false

! Corresponding attribute: XVW_PRINTPIXEL_UPDATEMODE
! Whether printpixel object is updated on pointer motion or button press,
! values include:
! KPRINTPIXEL_UM_CONTINUOUS 0
! KPRINTPIXEL_UM_BUTTON_PRESS 1
!
!*PrintPixel.printpixelUpdatemode: false

AN. The Pseudo Object

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/Pseudo

Inheritance
manager -> graphics -> color -> pseudo

Class-Specific Resources
pseudoShowPalette
pseudoUpdateOnadd
pseudoUseAlpha

Sub-Parts

The sub-parts of the Pseudo object include:
Pseudo.palette / palette object,

display color palette for psuedo object */
Pseudo.red / integer object,

allows user to specify red value */
Pseudo.green / integer object,

allows user to specify green value */
Pseudo.blue / integer object,

allows user to specify blue value */
Pseudo.alpha / integer object,

allows user to specify alpha channel */
You may specify resources for sub-parts of the pseudo object as desired.

11-45

App-defaults Program Services Volume III - Chapter 11

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_PSEUDO_SHOW_PALETTE
! Show the palette?
!
!*Pseudo.pseudoShowPalette: true

!
! Corresponding attribute: XVW_PSEUDO_PALETTE_TYPE
! (Setting resource on *Pseudo.palette sub-part)
! Specify palette type as one of:
! KPALETTE_TYPE_COLORBAR 1
! KPALETTE_TYPE_COLORCELL 2
! KPALETTE_TYPE_COLORWHEEL 3
!
!*Pseudo.palette.paletteType: 1
!

!
! Corresponding attribute: XVW_PSEUDO_UPDATE_ONADD
! Should pixels immediately change to the color specified by R,G,B
! when they are added to the pseudocolor list?
!
!*Pseudo.pseudoUpdateOnadd: false

!
! Corresponding attribute: XVW_PSEUDO_USE_ALPHA
! Provide integer object to change alpha channel?
!
!*Pseudo.pseudoUseAlpha: false

AO. The Rectangle Object

Generated From App-defaults file:
$ENVISION/objects/library/xvannotate/app-defaults/Rectangle

Inheritance
manager -> graphics -> rectangle

Class-Specific Resources
none

Sub-Parts

The Rectangle object has no sub-parts.

11-46

App-defaults Program Services Volume III - Chapter 11

AP. The RootWindow Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/RootWindow

Inheritance
manager -> rootwindow

Class-Specific Resources
none

Sub-Parts

The RootWindow object has no sub-parts.

AQ . The RowCol Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/RowCol

Inheritance
manager -> rowcol

Class-Specific Resources
rowcolNumberAcross
rowcolSpacing

Sub-Parts

The RowCol object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_ROWCOL_NUMBER_ACROSS
! Number of child objects to lay out in one row before a new row is started.
!
!*RowCol.rowcolNumberAcross: 1

! Corresponding Attribute: XVW_ROWCOL_SPACING
! Specifies minimum spacing between each object (see XVW_ROWCOL_SPACING).
!
!*RowCol.rowcolSpacing: -1

11-47

App-defaults Program Services Volume III - Chapter 11

AR. The String Object

Generated From App-defaults file:
$ENVISION/objects/library/xvannotate/app-defaults/String

Inheritance
manager -> graphics -> string

Class-Specific Resources
stringJustification

Sub-Parts

The String object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_STRING_JUSTIFICATION
! Justification of string, one of:
!
! KSTRING_JUSTIFY_CENTER 1
! KSTRING_JUSTIFY_TOP 2
! KSTRING_JUSTIFY_BOTTOM 3
! KSTRING_JUSTIFY_LEFT 4
! KSTRING_JUSTIFY_RIGHT 5
! KSTRING_JUSTIFY_TOPRIGHT 6
! KSTRING_JUSTIFY_TOPLEFT 7
! KSTRING_JUSTIFY_BOTTOMRIGHT 8
! KSTRING_JUSTIFY_BOTTOMLEFT 9
!
!*String.stringJustification: 4

AS. The StringValue Object

Generated From App-defaults file:
$ENVISION/objects/library/xvannotate/app-defaults/StringValue

Inheritance
manager -> graphics -> string -> stringvalue

Class-Specific Resources
stringFormat

11-48

App-defaults Program Services Volume III - Chapter 11

Sub-Parts

The StringValue object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_STRING_JUSTIFICATION
! (setting inherited resources)
! Justification of stringvalue, one of:
! KSTRING_JUSTIFY_CENTER 1
! KSTRING_JUSTIFY_TOP 2
! KSTRING_JUSTIFY_BOTTOM 3
! KSTRING_JUSTIFY_LEFT 4
! KSTRING_JUSTIFY_RIGHT 5
! KSTRING_JUSTIFY_TOPRIGHT 6
! KSTRING_JUSTIFY_TOPLEFT 7
! KSTRING_JUSTIFY_BOTTOMRIGHT 8
! KSTRING_JUSTIFY_BOTTOMLEFT 9
!
!*StringValue.stringJustification: 4

!
! Corresponding attribute: XVW_STRING_EMPHASIZE
! (setting inherited resources)
! Emphasize stringvalue?
!
*StringValue.stringEmphasize: true

!
! Corresponding attribute: XVW_STRING_FORMAT
! Format of number displayed by stringvalue object
!
!*StringValue.stringFormat: "%g"

AT . The TextDisplay Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/TextDisplay

Inheritance
manager -> viewport -> textdisplay

Class-Specific Resources
textdisplayRomanFontname
textdisplayBoldFontname
textdisplayItalicFontname
textdisplayHelveticaFontname
textdisplaySymbolFontname

11-49

App-defaults Program Services Volume III - Chapter 11

textdisplayRoff
textdisplayIndent
textdisplayWordcolor
textdisplayHightlightcolor

Sub-Parts

Sub-parts of the TextDisplay object include:
TextDisplay.notifywindow / notifywindow object,

notifies user when new page is formatting */

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_TEXTDISPLAY_ROMAN_FONTNAME
! Font to be used for "normal" text
!
!*TextDisplay.textdisplayRomanFontname: fixed

!
! Corresponding Attribute: XVW_TEXTDISPLAY_BOLD_FONTNAME
! Font to be used for bold text
!
!*TextDisplay.textdisplayBoldFontname:*-new century schoolbook-bold-r-normal--12-120-*

!
! Corresponding Attribute: XVW_TEXTDISPLAY_ITALIC_FONTNAME
! Font to be used for italic text
!
!*TextDisplay.textdisplayItalicFontname:*-new century schoolbook-bold-i-normal--12-120

!
! Corresponding Attribute: XVW_TEXTDISPLAY_HELVETICA_FONTNAME
! Font to be used for helvetica text
!
!*TextDisplay.textdisplayHelveticaFontname:*-adobe-helvetica-medium-r-normal--12-120-*

!
! Corresponding Attribute: XVW_TEXTDISPLAY_SYMBOL_FONTNAME
! Font to be used for symbol text
!
!*TextDisplay.textdisplaySymbolFontname:*-symbol-medium-r-normal--*-120-*

!
! Corresponding Attribute: XVW_TEXTDISPLAY_ROFF
! Format roff commands?
!
!*TextDisplay.textdisplayRoff: true

!
! Corresponding Attribute: XVW_TEXTDISPLAY_INDENT
! Number of pixels to indent before printing text
!
!*TextDisplay.textdisplayIndent: 10
!
! Corresponding Attribute: XVW_TEXTDISPLAY_WORDCOLOR
! Color to use with "hot" words
!

11-50

App-defaults Program Services Volume III - Chapter 11

!*TextDisplay.textdisplayWordcolor: #0000ff

!
! Corresponding Attribute: XVW_TEXTDISPLAY_HIGHLIGHTCOLOR
! Color to use with highlighted words
!
!*TextDisplay.textdisplayHightlightcolor: #ff0000

AU. The TextInput Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/TextInput

Inheritance
manager -> textinput

Class-Specific Resources
none

Sub-Parts

Sub-parts of the TextInput object include:
TextInput.cr_pixmap / pixmap object,

represents a "live" selection */
TextInput.text / text object,

parameter box in which user enters value */
TextInput.label / labelstring object,

displays label of textinput selection */
You may specify resources for sub-parts of the textinput object as desired.

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_PIXMAP_FILENAME
! (Setting resources on *TextInput.cr_pixmap sub-part)
! Specify pixmap to appear in upper left hand corner of textinput object
!
!*TextInput.cr_pixmap.pixmapFilename: pixmaps:lightning

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_BACKGROUND
! (Setting resources on *TextInput.label sub-part)
! Specify foreground color & font for label of textinput object
!
!*TextInput.label.foreground: #000000
!*TextInput.label.background: #ffffff

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_BACKGROUND, XVW_FONTNAME

11-51

App-defaults Program Services Volume III - Chapter 11

! (Setting resources on *TextInput.text sub-part)
! Specify foreground, background color & font for button of textinput object
!
!*TextInput.text.foreground: #000000
!*TextInput.text.background: #979797
!*TextInput.text.fontName: fixed
!*TextInput.text.fontList: fixed

AV. The TextString Object

Generated From App-defaults file:
$DESIGN/objects/library/xvisual/app-defaults/TextString

Inheritance
manager -> graphics -> string -> textstring

Class-Specific Resources
textstringInsertion

Sub-Parts

The TextString object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_TEXTSTRING_INSERTION
! The position at which the user will be inserting text.
! See manual for details.
!
!*TextString.textstringInsertion: 0

!
! Corresponding attributes: XVW_FOREGROUND, XVW_BACKGROUND
! (setting inherited resources)
! Foreground & Background colors of TextString object
!
*TextString.foreground: yellow
*TextString.background: black

AW . The Threshold Object

11-52

App-defaults Program Services Volume III - Chapter 11

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/Threshold

Inheritance
manager -> graphics -> color -> threshold

Class-Specific Resources
thresholdShowPalette
thresholdPolicy
thresholdClipPixelVal
thresholdClipAccept
thresholdThresPixelVal
thresholdThresInvert

Sub-Parts

The sub-parts of the Threshold object include:
Threshold.palette / palette object,

displays color palette for threshold object */
Threshold.lower / integer object,

allows user to specify lower range value */
Threshold.upper / integer object,

allows user to specify upper range value */
Threshold.range / integer object,

allows user to change upper & lower values together */
You may specify resources for sub-parts of the threshold object as desired.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_THRESHOLD_SHOW_PALETTE
! Show the palette?
!
!*Threshold.thresholdShowPalette: true

!
! Corresponding attribute: XVW_PALETTE_TYPE
! (Setting resource on *Threshold.palette sub-part)
! Specify palette type as one of:
! KPALETTE_TYPE_COLORBAR 1
! KPALETTE_TYPE_COLORCELL 2
! KPALETTE_TYPE_COLORWHEEL 3
!
!*Threshold.palette.paletteType: 1
!

!
! Corresponding attribute: XVW_THRESHOLD_POLICY
! See manual for explanation; values include:
! KTHRESHOLD_POLICY_CLIP 1
! KTHRESHOLD_POLICY_THRESH 2
!
!*Threshold.thresholdPolicy: 1

!
! Corresponding attribute: XVW_THRESHOLD_CLIP_PIXELVAL

11-53

App-defaults Program Services Volume III - Chapter 11

!
!*Threshold.thresholdClipPixelVal: 0

!
! Corresponding attribute: XVW_THRESHOLD_CLIP_ACCEPT
!
!*Threshold.thresholdClipAccept: true

!
! Corresponding attribute: XVW_THRESHOLD_THRESH_PIXELVAL
!
!*Threshold.thresholdThreshPixelVal: 255

!
! Corresponding attribute: XVW_THRESHOLD_THRES_INVERT
!
!*Threshold.thresholdThresInvert: false

AX. The Timer Object

Generated From App-defaults file:
$ENVISION/objects/library/xvannotate/app-defaults/Timer

Inheritance
manager -> graphics -> string -> stringvalue -> timer

Class-Specific Resources
timerUpdatetime

Sub-Parts

The Timer object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_TIMER_UPDATETIME
! How often the timer is updated, in fractions of a second.
!
!*Timer.timerUpdatetime: 0.1

AY . The Viewport Object

11-54

App-defaults Program Services Volume III - Chapter 11

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Viewport

Inheritance
manager -> viewport

Class-Specific Resources
vpAllowHoriz
vpAllowVert
vpForceHoriz
vpForceVert
vpUseBottom
vpUseRight
vpXoffset
vpYoffset

Sub-Parts

Sub-parts of the Viewport object include:
Viewport.clip / manager object,

imposes physical (clip) size of viewport area */
Viewport.plane / manager object,

makes up full (plane) size of viewport contents */
Viewport.vertical / scrollbar object,

the vertical scrollbar */
Viewport.horizontal / scrollbar object,

the horizontal scrollbar */

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_VP_ALLOW_HORIZ
! Allow horizontal scrollbar?
!
!*Viewport.vpAllowHoriz: true

!
! Corresponding Attribute: XVW_VP_ALLOW_VERT
! Allow vertical scrollbar?
!
!*Viewport.vpAllowVert: true

!
! Corresponding Attribute: XVW_VP_FORCE_HORIZ
! Insist on horizontal scrollbar (whether or not it is needed)?
!
!*Viewport.vpForceHoriz: true

!
! Corresponding Attribute: XVW_VP_FORCE_VERT
! Insist on vertical scrollbar (whether or not it is needed)?
!
!*Viewport.vpForceVert: true

!
! Corresponding Attribute: XVW_VP_USE_BOTTOM

11-55

App-defaults Program Services Volume III - Chapter 11

! Horizontal scrollbar appearing at bottom?
!
!*Viewport.vpUseBottom: true

!
! Corresponding Attribute: XVW_VP_USE_RIGHT
! Vertical scrollbar appearing at right?
!
!*Viewport.vpUseRight: true

!
! Corresponding Attribute: XVW_VP_XOFFSET
! The offset of the viewport in pixels from the left side
!
!*Viewport.vpXoffset: 0

!
! Corresponding Attribute: XVW_VP_YOFFSET
! The offset of the viewport in pixels from the top
!
!*Viewport.vpYoffset: 0

AZ. The Warn Object

Generated From App-defaults file:
$DESIGN/objects/library/xvobjects/app-defaults/Warn

Inheritance
manager -> warn

Class-Specific Resources
warnPixmapfile

Sub-Parts

Sub-parts of the Warn object include:
Warn.pixmap / pixmap object,

decorates upper left hand corner of Warn object */
Warn.text / text object,

displays warning message */
Warn.button / button object,

acknowledgement button */
Warn.label / labelstring object,

label at top of warn object */
You may specify resources for sub-parts of the warn object as desired.

11-56

App-defaults Program Services Volume III - Chapter 11

Resource Specifications in App-defaults File

! Corresponding Attribute: XVW_WARN_PIXMAPFILE
! Specify pixmap to appear in upper left hand corner of warn object
!
!*Warn*warnPixmapfile: $DESIGN/objects/library/xvobjects/pixmaps/warn.xpm

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_FONTNAME
! (Setting resources on *Warn.label sub-part)
! Specify foreground color & font for label of warn object
!
!*Warn.label.foreground: #000000
!*Warn.label.fontName: fixed

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_BACKGROUND, XVW_FONTNAME
! (Setting resources on *Warn.button sub-part)
! Specify foreground, background color & font for button of warn object
!
!*Warn.button.foreground: #000000
!*Warn.button.background: #ffff00
!*Warn.button.fontName: fixed
!*Warn.button.fontList: fixed

!
! Corresponding Attribute: XVW_FOREGROUND, XVW_FONTNAME
! (Setting resources on *Warn.text sub-part)
! Specify foreground, background color & font for text of warn object
!
!*Warn.text.foreground: #000000
!*Warn.text.fontName: fixed
!*Warn.text.fontList: fixed

BA. The Zoom Object

Generated From App-defaults file:
$ENVISION/objects/library/xvimage/app-defaults/Zoom

Inheritance
manager -> graphics -> color -> image -> zoom

Class-Specific Resources
zoomFactor
zoomLocationmarker
zoomUpdatemode
zoomInterpolate

11-57

App-defaults Program Services Volume III - Chapter 11

Sub-Parts

The Zoom object has no sub-parts.

Resource Specifications in App-defaults File

! Corresponding attribute: XVW_ZOOM_FACTOR
! The zoom factor; see manual for explanation.
!
!*Zoom.zoomFactor: 1.0

!
! Corresponding attribute: XVW_ZOOM_LOCATIONMARKER
! Type of cursor used to mark center of zoom window; values include:
! KZOOM_LM_NONE 0
! KZOOM_LM_CROSS 1
! KZOOM_LM_BOX 2
! KZOOM_LM_DOT 3
!*Zoom.zoomLocationmarker: 1

!
! Corresponding attribute: XVW_ZOOM_UPDATEMODE
! Whether zoom is updated on pointer motion or button press, values include:
! KZOOM_UM_CONTINUOUS 0
! KZOOM_UM_BUTTON_PRESS 1
!
!*Zoom.zoomUpdatemode: 0

!
! Corresponding attribute: XVW_ZOOM_INTERPOLATE
! Type of interpolation to be used; currently, only KZERO_ORDER (2)
! (pixel replication) is supported.
!
!*Zoom.zoomInterpolate: 2

11-58

Table of Contents

A. About app-defaults files . 11-1
A.1. GUI & Visual Object App-Defaults Files 11-1
A.2. Application Specific App-Defaults Files 11-2
A.3. Precedence for Scoping of App-defaults Files 11-2
A.4. Creating Your Own App-Defaults files 11-3
A.5. Application Interaction with App-Defaults Files 11-3
A.6. Issues With Regard to Specification of Object Resources 11-4

A.6.1. Inheritance & Class-Specific Resources 11-4
A.6.2. Precedence for Inheritance of Objects 11-5
A.6.3. Sub-Parts . 11-5

A.7. Syntax of the App-defaults File . 11-6
A.8. The Remainder of the Appendix . 11-7

B. The Animate Object . 11-8
C. The Area Object . 11-9
D. The Axis Object . 11-9
E. The Axis2D Object . 11-13
F. The Browser Object . 11-14
G. The Canvas Object . 11-15
H. The Circle Object . 11-16
I. The Color Object . 11-16
J. The ColorCell Object . 11-17
K. The Connection Object . 11-18
L. The Console Object . 11-19
M. The Date Object . 11-20
N. The Double Object . 11-20
O. The Error Object . 11-21
P. The Float Object . 11-22
Q. The Help Object . 11-24
R. The Image Object . 11-25
S. The ImageIcon Object . 11-27
T. The Indicator Object . 11-27
U. The Info Object . 11-29
V. The InputFile Object . 11-30
W. The InputOnly Object . 11-31
X. The Integer Object . 11-31
Y. The Label Object . 11-32
Z. The Layout Object . 11-33
AA. The Line Object . 11-34
AB. The Marker Object . 11-35
AC. The NotifyWindow Object . 11-35
AD. The OutputFile Object . 11-37
AE. The Palette Object . 11-38
AF. The PanIcon Object . 11-38
AG. The Pixmap Object . 11-40
AH. The Plot2D Object . 11-40
AI. The Plot3D Object . 11-41
AJ. The Polyline Object . 11-42

- i -

App-defaults Program Services Volume III - Chapter 11

AK. The Position Object . 11-42
AL. The PrintMapVal Object . 11-43
AM. The PrintPixel Object . 11-44
AN. The Pseudo Object . 11-45
AO. The Rectangle Object . 11-46
AP. The RootWindow Object . 11-47
AQ. The RowCol Object . 11-47
AR. The String Object . 11-48
AS. The StringValue Object . 11-48
AT . The TextDisplay Object . 11-49
AU. The TextInput Object . 11-51
AV . The TextString Object . 11-52
AW. The Threshold Object . 11-52
AX. The Timer Object . 11-54
AY. The Viewport Object . 11-54
AZ. The Warn Object . 11-56
BA. The Zoom Object . 11-57

- ii -

	 1 - Introduction
	 A - Introduction To GUI & Visualization Services
	 A.1 - The xvwidgets Library
	 A.2 - The xvobjects Library
	 A.3 - The xvimage Library
	 A.4 - The xvannotations Library
	 A.5 - The xvplot Library
	 A.6 - The xvlang Library
	 A.7 - The xvforms Library
	 A.8 - The xvutils Library

	 2 - Xvwidgets
	 A - Introduction
	 A.1 - xvw_initialize() initialize the xvwidgets library

	 B - General Attributes Of GUI & Visual Objects
	 B.1 - Pixel Geometry
	 B.2 - Character Geometry
	 B.3 - Colors, Fonts, and Cursors

	 C - Toplevel (Shell) Objects
	 C.1 - xvw_create_application_shell() create an application shell object
	 C.2 - xvw_create_transient_shell() create a transient shell object
	 C.3 - Attributes of the Shell Object

	 D - Setting And Getting Attributes
	 D.1 - xvw_set_attribute() set a single attribute on an object
	 D.2 - xvw_get_attribute() get a single attribute of an object
	 D.3 - xvw_set_attributes() set attributes on an object (variable argument list)
	 D.4 - xvw_get_attributes() get attributes from an object (variable argument list)

	 E - The VisiQuest 2001 Manager Object
	 E.1 - xvw_create_manager() create a VisiQuest Manager object
	 E.2 - Attributes of the VisiQuest 2001 Manager Object
	 E.2.1 - Relative Layout Attributes
	 E.2.2 - Pixel Geometry Bounds Attributes
	 E.2.3 - Preferred Sizing Attributes
	 E.2.4 - Pixel Spacing Attributes
	 E.2.5 - Tacking Attributes
	 E.2.6 - Attributes That Control Direct Manipulation of Children

	 E.3 - Attributes of the VisiQuest 2001 Manager Gadget

	 F - Callbacks, Event/Action/Input Handlers, & Timeouts
	 F.1 - Using Callbacks
	 F.1.1 - xvw_add_callback() add a callback to a GUI object
	 F.1.2 - xvw_remove_callback() remove a callback from a GUI object
	 F.1.3 - Callback Example

	 F.2 - Using Event Handlers
	 F.2.1 - xvw_add_event() add an event handler to an object
	 F.2.2 - xvw_insert_event() insert an event handler into an object's event list.
	 F.2.3 - xvw_remove_event() remove an event handler from an object
	 F.2.4 - Event Handler Example

	 F.3 - Using Action Handlers
	 F.3.1 - xvw_add_action() add an action handler to an object
	 F.3.2 - xvw_remove_action() remove an action handler from an object
	 F.3.3 - Action Handler Example

	 F.4 - Using Input Handlers
	 F.4.1 - xvw_add_detectfile() add a (file) detect handler to an object
	 F.4.2 - xvw_remove_detectfile() remove a (file) detect handler from an object
	 F.4.3 - xvw_add_detectfid() add (fid) input handler to an object
	 F.4.4 - xvw_remove_detectfid() remove (fid) input handler from an object

	 F.5 - Using Timeouts
	 F.5.1 - xvw_add_timeout() add a timeout to an object
	 F.5.2 - xvw_remove_timeout() removes a timeout from an object
	 F.5.3 - Timeout Example

	 F.6 - About Client Data
	 F.6.1 - Client Data Example 1
	 F.6.2 - Client Data Example 2
	 F.6.3 - Client Data Example 3

	 G - General Utilities For Visual & GUI Objects
	 G.1 - xvw_appcontext() return the application context associated with a object
	 G.2 - xvw_busy() set an object to be busy or not busy
	 G.3 - xvw_check_managed() see if an object is managed
	 G.4 - xvw_check_mapped() see if an object is mapped
	 G.5 - xvw_check_menuactive() see if an object's internal menuform is displayed
	 G.6 - xvw_check_menuexist() check if an object has an internal menuform
	 G.7 - xvw_check_realized() see if an object is realized
	 G.8 - xvw_check_sensitive() see if an object is sensitive
	 G.9 - xvw_check_subclass() check the subclass of an object
	 G.10 - xvw_check_toplevel() see if object specified is a toplevel, or see if a toplevel exists
	 G.11 - xvw_check_visible() see if an object is visible
	 G.12 - xvw_children() get the children of an object
	 G.13 - xvw_colormap() get the colormap associated with a object
	 G.14 - xvw_class() get the class of the object
	 G.15 - xvw_create() create a new object
	 G.16 - xvw_destroy() destroy an object
	 G.17 - xvw_display() returns the display associated with a object
	 G.18 - xvw_duplicate() duplicate an object
	 G.19 - xvw_font() return the font being used by a object
	 G.20 - xvw_fontname() return the font name being used by an object
	 G.21 - xvw_geometry() get the geometry of an object
	 G.22 - xvw_lower() lower an object
	 G.23 - xvw_manage() manage an object
	 G.24 - xvw_map() map an object
	 G.25 - xvw_name() get the name of the object
	 G.26 - xvw_numchildren() get the number of children of an object
	 G.27 - xvw_object() get the object associated with a particular widget
	 G.28 - xvw_parent() get the parent of an object
	 G.29 - xvw_place() place an object on the screen
	 G.30 - xvw_raise() raise an object
	 G.31 - xvw_realize() realize an object
	 G.32 - xvw_refresh() refreshes an object
	 G.33 - xvw_rootwindow() get the root window associated with an object
	 G.34 - xvw_sensitive() sensitize or de-sensitize an object
	 G.35 - xvw_screen() return the screen associated with a object
	 G.36 - xvw_screennum() return the screen number associated with an object
	 G.37 - xvw_sort() sort a list of objects
	 G.38 - xvw_toplevel() get the toplevel object of an object
	 G.39 - xvw_unmanage() unmanage an object
	 G.40 - xvw_unrealize() un-realize an object
	 G.41 - xvw_unmap() unmap an object
	 G.42 - xvw_visual() get the visual associated with an object
	 G.43 - xvw_widget() get the widget (or gadget) associated with an object
	 G.44 - xvw_window() get the window associated with an object

	 H - The Button Object
	 H.1 - xvw_create_button() create a button object
	 H.2 - Attributes of the Button Object
	 H.3 - About Callbacks on Buttons

	 I - The Label Object
	 I.1 - xvw_create_label() create a label object
	 I.2 - Attributes of the Label Object
	 I.3 - Button & Label Example

	 J - The List Object
	 J.1 - xvw_create_list() create a list object
	 J.2 - Attributes of the List Object
	 J.3 - About Callbacks on Lists
	 J.4 - List Example

	 K - The Menu & MenuButton Objects
	 K.1 - xvw_create_menubutton() create a menubutton object
	 K.2 - xvw_create_menu() create a menu object
	 K.3 - MenuButton Example
	 K.4 - About Callbacks on Menubuttons

	 L - The Pixmap Object
	 L.1 - xvw_create_pixmap() create a pixmap object
	 L.2 - Attributes of the Pixmap Object
	 L.3 - Complete Resource Set of the Pixmap Object
	 L.4 - Example using the Pixmap Object

	 M - The Rowcol Object
	 M.1 - xvw_create_rowcol() create a row-col object
	 M.2 - Attributes of the RowCol Object
	 M.3 - Complete Resource Set of the RowCol Object
	 M.4 - Example using the RowCol Object

	 N - The Scrollbar Object
	 N.1 - xvw_create_scrollbar() create a scrollbar object
	 N.2 - Attributes of the Scrollbar Object
	 N.3 - About Callbacks on Scrollbars
	 N.4 - Scrollbar Example

	 O - The Text Widget
	 O.1 - xvw_create_text() create a text object
	 O.2 - About the Text Object
	 O.2.1 - Single-Line vs. Multi-line Text Objects
	 O.2.2 - Cursor Placement
	 O.2.3 - Navigation of Multi-line Text Objects
	 O.2.4 - Read-Only vs. Read-Write Text Objects
	 O.2.5 - Text Focus
	 O.2.6 - Specified Text Source vs. File Containing Text Source
	 O.2.7 - Text Wrapping
	 O.2.8 - Cut and Paste
	 O.2.9 - Text Object Key Bindings
	 O.2.10 - Attributes of the Text Object

	 O.3 - About Callbacks on Text Objects

	 P - The Viewport Object
	 P.1 - xvw_create_viewport() create a viewport object
	 P.2 - Attributes of the Viewport Object
	 P.3 - Complete Resource Set of the Viewport Object
	 P.4 - Example using the Viewport Object

	 3 - Xvobjects
	 A - Introduction
	 B - The Browser Object
	 B.1 - xvw_create_browser() create a browser GUI object
	 B.2 - Attributes of the Browser Object
	 B.3 - Complete Resource Set of the Browser Manager Object
	 B.4 - Example using the Browser Object

	 C - The Canvas Object
	 C.1 - xvw_create_canvas() create a canvas object
	 C.2 - Attributes of the Canvas Manager Object
	 C.3 - Complete Resource Set of the Canvas Manager Object
	 C.4 - Example using the Canvas Object

	 D - The Connection Object
	 D.1 - xvw_create_connection() create a connection object
	 D.2 - Attributes of the Connection Object
	 D.3 - Complete Resource Set of the Connection Object

	 E - The Double Object
	 E.1 - xvw_create_double() creates a double object
	 E.2 - Attributes of the Double Object
	 E.3 - Complete Resource Set of the Double Object

	 F - The Error Object
	 F.1 - xvw_create_error() create an error object
	 F.2 - Attributes of the Error Object
	 F.3 - Complete Resource Set of the Error Object

	 G - The Float Object
	 G.1 - xvw_create_float() create a float object
	 G.2 - Attributes of the Float Object
	 G.3 - Complete Resource Set of the Float Object

	 H - The Help Object
	 H.1 - xvw_create_help() create a help object
	 H.2 - Attributes of the Help Object
	 H.3 - Complete Resource Set of the Help Object
	 H.4 - Example using the Help Object

	 I - The Info Object
	 I.1 - xvw_create_info() create an info object
	 I.2 - Attributes of the Info Object
	 I.3 - Complete Resource Set of the Info Object
	 I.4 - Example using the Info Object

	 J - The Inputfile Object
	 J.1 - xvw_create_inputfile() create a inputfile GUI object
	 J.2 - Attributes of the Inputfile Object
	 J.3 - Complete Resource Set of the InputFile Object

	 K - The Integer Object
	 K.1 - xvw_create_integer() create an integer GUI object
	 K.2 - Attributes of the Integer Object
	 K.3 - Complete Resource Set of the Integer Object
	 K.4 - Example using the Integer Object

	 L - The Layout Object
	 L.1 - xvw_create_layout() create a layout object
	 L.2 - Attributes of the Layout Object
	 L.3 - Complete Resource Set of the Layout Object
	 L.4 - Example using the Layout Object

	 M - The NotifyWindow Object
	 M.1 - xvw_create_notifywindow() create a notifywindow object
	 M.2 - Attributes of the NotifyWindow Object
	 M.3 - Complete Resource Set of the NotifyWindow Object

	 N - The Outputfile Object
	 N.1 - xvw_create_outputfile() create a outputfile GUI object
	 N.2 - Attributes of the OutputFile Object
	 N.3 - Complete Resource Set of the OutputFile Object
	 N.4 - Example using the OutputFile Object

	 O - The TextDisplay Object
	 O.1 - xvw_create_textdisplay() create a textdisplay object
	 O.2 - Attributes of the TextDisplay Object
	 O.3 - Complete Resource Set of the Textdisplay Object
	 O.4 - Example using the Textdisplay Object

	 P - The TextInput Object
	 P.1 - xvw_create_textinput() create a textinput object
	 P.2 - Attributes of the TextInput Object
	 P.3 - Complete Resource Set of the TextInput Object

	 Q - The Warn Object
	 Q.1 - xvw_create_warn() create a warning object
	 Q.2 - Attributes of the Warn Object
	 Q.3 - Complete Resource Set of the Warn Object
	 Q.4 - Example using the Warn Object

	 4 - The Graphics Attributes
	 A - Appearance Attributes
	 B - World View Attributes
	 B.1 - World Coordinates
	 B.2 - Viewport Coordinates
	 B.3 - Perspective
	 B.4 - The Axis Mode
	 B.5 - Symmetry

	 C - Clipping
	 D - Attaching The World View
	 D.1 - Attaching An Object To Its Parent
	 D.2 - Attaching An Object To Itself
	 D.3 - Attaching An Object To A Sibling

	 5 - Xvimage
	 A - Introduction
	 A.1 - Overview of Visual Objects Related To Imaging
	 A.2 - Overview of Visual Objects Related To Colormap Manipulation

	 B - The Color Attributes
	 C - Visual Objects Related to Imaging
	 C.1 - The Animate Object
	 C.1.1 - xvw_create_animate() create a slide animation visual object
	 C.1.2 - Attributes of the Animation Object
	 C.1.3 - Resource Set of the Animation Object
	 C.1.4 - Example Using the Animate Visual Object

	 C.2 - The Image Object
	 C.2.1 - xvw_create_image() create an image object
	 C.2.2 - Attributes of the Image Object
	 C.2.3 - Complete Resource Set of the Image Object
	 C.2.4 - Example using the Image Object

	 C.3 - The ImageIcon Object
	 C.3.1 - xvw_create_imageicon() create a imageicon object
	 C.3.2 - Attributes of the ImageIcon Object
	 C.3.3 - Complete Resource Set of the ImageIcon Object
	 C.3.4 - Example using the ImageIcon Visual Object

	 C.4 - The PanIcon Object
	 C.4.1 - xvw_create_panicon() create a panicon object
	 C.4.2 - Attributes of the PanIcon Object
	 C.4.3 - Resource Set of the PanIcon Object
	 C.4.4 - Example Using the PanIcon Visual Object

	 C.5 - The Position Object
	 C.5.1 - xvw_create_position() create a position object
	 C.5.2 - Attributes of the Position Visual Object
	 C.5.3 - Complete Resource Set of the Position Visual Object

	 C.6 - The PrintPixel Object
	 C.6.1 - xvw_create_printpixel() create a printpixel xvobject
	 C.6.2 - Attributes of the PrintPixel Object
	 C.6.3 - Resource Set of the PrintPixel Object
	 C.6.4 - Example Using the PrintPixel Visual Object

	 C.7 - The Zoom Object
	 C.7.1 - xvw_create_zoom() create a zoom object
	 C.7.2 - Attributes of the Zoom Object
	 C.7.3 - Complete Resource Set of the Zoom Object
	 C.7.4 - Example Using the Zoom Object

	 D - Visual Objects Related to Colormaps
	 D.1 - The ColorCell Object
	 D.1.1 - xvw_create_colorcell() create a colorcell xvobject
	 D.1.2 - Attributes of the Colorcell Visual Object
	 D.1.3 - Complete Resource Set of the ColorCell Visual Object
	 D.1.4 - Example using the ColorCell Visual Object

	 D.2 - The Palette Object
	 D.2.1 - xvw_create_palette() create a palette object
	 D.2.2 - Attributes of the Palette Visual Object
	 D.2.3 - Complete Resource Set of the Palette Visual Object
	 D.2.4 - Example Using the Palette Visual Object

	 D.3 - The PrintMapVal Object
	 D.3.1 - xvw_create_printmapval() create a printmapval xvobject
	 D.3.2 - Attributes of the PrintMapVal Object
	 D.3.3 - Resource Set of the PrintMapVal Object
	 D.3.4 - Example Using the PrintMapVal Visual Object

	 D.4 - The PseudoColor Object
	 D.4.1 - xvw_create_pseudo() create a pseudo xvobject
	 D.4.2 - Attributes of the PseudoColor Visual Object
	 D.4.3 - Complete Resource Set of the PseudoColor Visual Object
	 D.4.4 - Example Using the Pseudocolor Visual Object

	 D.5 - The Threshold Object
	 D.5.1 - xvw_create_threshold() create a threshold object
	 D.5.2 - Attributes of the Threshold Object
	 D.5.3 - Attributes of the Threshold Object
	 D.5.4 - Example using the Threshold Visual Object

	 6 - Xvplot
	 A - Overview of Visual Objects Related To Plotting
	 B - Issues Related to Plotting
	 B.1 - Interpretation of the Data Object
	 B.1.1 - Value Segment Interpretation
	 B.1.2 - Location Segment Interpretation

	 B.2 - Plot Color

	 C - The Area Object
	 C.1 - xvw_create_area() create a graphics area object
	 C.2 - Attributes of the Area Object
	 C.3 - Resource Set of the Area Object
	 C.4 - Example using the Area Visual Object

	 D - The 2D Plot Object
	 D.1 - xvw_create_plot2d() create a 2D plot object
	 D.2 - Attributes of the 2D Plot Object
	 D.3 - Complete Resource Set of the 2D Plot Object
	 D.4 - Example Using the 2D Plot Visual Object

	 E - The 3D Plot Object
	 E.1 - xvw_create_plot3d() create a 3D plot object
	 E.2 - Attributes of the 3D Plot Object
	 E.3 - Complete Resource Set of the 3D Plot Object
	 E.4 - Example Using the 3D Plot Visual Object

	 F - The Axis Attributes
	 F.1 - General Axis Attributes
	 F.2 - Control of Displayed Axis Elements
	 F.3 - Control of Labels
	 F.4 - Line Widths & Line Types
	 F.5 - Setting Colors of Axis Elements
	 F.6 - Setting the Scale of Axes

	 G - The 2D Axis Object
	 G.1 - xvw_create_axis2d() create a 2D axis object
	 G.2 - Attributes of the Axis2D Visual Object
	 G.3 - Complete Resource Set of the Axis2D Visual Object
	 G.4 - Example Using the Axis2D Visual Object

	 H - The Indicator Object
	 H.1 - xvw_create_indicator() creates an indicator object
	 H.2 - Attributes of the Indicator Visual Object
	 H.3 - Complete Resource Set of the Indicator Visual Object
	 H.4 - Example using the Indicator Visual Object

	 7 - Xvannotate
	 A - Overview of Visual Objects Related To Annotation
	 B - Issues Related to Annotations
	 C - The Circle Object
	 C.1 - xvw_create_circle() create a circle object.
	 C.2 - Attributes of the Circle Visual Object
	 C.3 - Complete Resource Set of the Circle Visual Object
	 C.4 - Example using the Circle Visual Object

	 D - The Date Object
	 D.1 - xvw_create_date() create a date object.
	 D.2 - Attributes of the Date Visual Object
	 D.3 - Complete Resource Set of the Date Visual Object
	 D.4 - Example using the Date Visual Object

	 E - The Ellipse Object
	 E.1 - xvw_create_ellipse() create a ellipse object.
	 E.2 - Attributes of the Ellipse Visual Object
	 E.3 - Complete Resource Set of the Ellipse Visual Object
	 E.4 - Example using the Ellipse Visual Object

	 F - The Line Object
	 F.1 - xvw_create_line() create a line object.
	 F.2 - Attributes of the Line Visual Object
	 F.3 - Complete Resource Set of the Line Visual Object
	 F.4 - Example using the Line Visual Object

	 G - The Marker Object
	 G.1 - xvw_create_marker() create a marker object
	 G.2 - Attributes of the Marker Visual Object
	 G.3 - Complete Resource Set of the Marker Visual Object
	 G.4 - Example using the Marker Visual Object

	 H - The Polyline Object
	 H.1 - xvw_create_polyline() create a polyline object.
	 H.2 - Attributes of the Polyline Object
	 H.3 - Complete Resource Set of the Polyline Object

	 I - The Rectangle Object
	 I.1 - xvw_create_rectangle() creates a rectangle object
	 I.2 - Attributes of the Rectangle Object
	 I.3 - Complete Resource Set of the Rectangle Object
	 I.4 - Example Using the Rectangle Visual Object

	 J - The String Object
	 J.1 - xvw_create_string() create a string annotation
	 J.2 - Attributes of the String Object
	 J.3 - Attributes of the String Object
	 J.4 - Example Using the String Visual Object

	 K - The StringValue Object
	 K.1 - xvw_create_stringvalue() creates a string value object
	 K.2 - Attributes of the StringValue Object
	 K.3 - Complete Resource Set of the StringValue Object
	 K.4 - Example Using the StringValue Visual Object

	 L - The Timer Object
	 L.1 - xvw_create_timer() create a timer object.
	 L.2 - Attributes of the Timer Object
	 L.3 - Attributes of the Timer Object

	 8 - Xvforms
	 A - Introduction
	 A.1 - Available GUI Items
	 A.1.1 - The Form
	 A.1.2 - The Subform
	 A.1.3 - The Pane
	 A.1.4 - The Master Form
	 A.1.5 - The Guide Pane
	 A.1.6 - Subform Buttons
	 A.1.7 - Guide Buttons
	 A.1.8 - Action Buttons
	 A.1.9 - Help Buttons
	 A.1.10 - Quit Buttons
	 A.1.11 - InputFile Selections
	 A.1.12 - OutputFile Selections
	 A.1.13 - Integer Selections
	 A.1.14 - Float Selections
	 A.1.15 - Double Selections
	 A.1.16 - String Selections
	 A.1.17 - Flag Selections
	 A.1.18 - Logical Selections
	 A.1.19 - Cycle Selections
	 A.1.20 - List Selections
	 A.1.21 - DisplayList Selections
	 A.1.22 - StringList Selections
	 A.1.23 - Blank Selections (Labels)
	 A.1.24 - Routine Buttons
	 A.1.25 - Stdin And Stdout Selections
	 A.1.26 - Submenus
	 A.1.27 - Workspaces

	 B - About Public xvforms Library Calls
	 C - Routines for Form Creation, Display, Etc
	 C.1 - xvf_create_form() create and map GUI of xvroutine
	 C.2 - xvf_run_form() run the GUI of an xvroutine
	 C.3 - xvf_destroy_form() destroy GUI of xvroutine & free associated memory
	 C.4 - xvf_clear_selections() reset GUI items of xvroutine

	 D - Setting & Getting GUI Item Attributes
	 D.1 - xvf_set_attribute() set a single attribute of a GUI item
	 D.2 - xvf_get_attribute() get a single attribute of a GUI item
	 D.3 - xvf_set_attributes() set multiple attributes of a GUI item
	 D.4 - xvf_get_attributes() get multiple attributes of a GUI item

	 E - GUI Item Resource Set
	 E.1 - Complete GUI Item Resource Listing
	 E.2 - General GUI Item Attributes
	 E.3 - Attributes of InputFiles and OutputFiles
	 E.4 - Attributes of Logicals
	 E.5 - Attributes of Integers
	 E.6 - Attributes of Floats
	 E.7 - Attributes of Doubles
	 E.8 - Attributes of Strings
	 E.9 - Attributes of Toggles
	 E.10 - Attributes of Lists
	 E.11 - Attributes of Cycles
	 E.12 - Attributes of Routine Buttons And Help Buttons
	 E.13 - Attributes for Subform And Pane Display
	 E.14 - Attributes for Printing UIS files
	 E.15 - xvf_get_xvobject() return desired xvobject component of kformstruct

	 F - Adding Extra Calls To GUI Items
	 F.1 - xvf_add_extra_call() add extra callback to GUI item
	 F.2 - xvf_remove_extra_call() remove function call from GUI item

	 G - Adding Callbacks To GUI Attributes
	 G.1 - xvf_add_gui_callback() add callback to a GUI item
	 G.2 - xvf_remove_gui_callback() remove callback from GUI item

	 9 - Xvutils
	 A - Introduction
	 B - Errors, Warnings, Prompts, and Information Display
	 B.1 - kerror() print error messages in a standardized format
	 B.2 - kinfo() print information messages in a standardized format
	 B.3 - kprompt() request an acknowledgement from the user
	 B.4 - kchoose() prompt the user to select from a list of items
	 B.5 - ksave() request an acknowledgement for quitting an application
	 B.6 - kquit() request an acknowledgement for quitting an application
	 B.7 - xvu_choose_wait() pop up a choose dialog box; wait for response
	 B.8 - xvu_error_wait() pop up error object (1 button); wait for acknowledgement
	 B.9 - xvu_info_wait() pop up info object (1 button); wait for acknowledgement
	 B.10 - xvu_multiprompt_wait() pop up dialog containing prompt and acknowledgement buttons
	 B.11 - xvu_prompt_wait() pop up prompting object (2 choices); wait for response
	 B.12 - xvu_quit_wait() pop up a quit dialog box; wait for response
	 B.13 - xvu_save_wait() pop up a save message; wait for response
	 B.14 - xvu_warn_wait() pop up warn object (1 button); wait for acknowledgement

	 C - Browser, Online Help, Misc Prompting, Lists, and File Viewing
	 C.1 - xvu_browse_wait() pop up the VisiQuest file/alias browser; wait for response
	 C.2 - xvu_help_wait() display help file or help directory
	 C.3 - xvu_query_wait() pop up prompt widget; wait for response
	 C.4 - xvu_run_list_multsel_wait() display list, wait for multiple choices and acknowledgement

	 10 - Xvlang
	 A - Introduction
	 B - Basic Visual Programming Capabilities
	 B.1 - The Glyph Object
	 B.1.1 - xvw_create_glyph() create a glyph object
	 B.1.2 - Attributes of the Glyph Object
	 B.1.3 - Complete Resource Set of the Glyph Object

	 B.2 - The Workspace Object
	 B.2.1 - xvw_create_workspace() create a workspace object
	 B.2.2 - Attributes of the Workspace Object
	 B.2.3 - Complete Resource Set of the Workspace Object

	 B.3 - The Node Object
	 B.3.1 - xvw_create_node() create an node object
	 B.3.2 - Attributes of the Node Object
	 B.3.3 - Complete Resource Set of the Node Object

	 B.4 - The Port Object
	 B.4.1 - xvw_create_port() create a port object
	 B.4.2 - Attributes of the Port Object
	 B.4.3 - Complete Resource Set of the Port Object

	 B.5 - The Command Bar Object
	 B.5.1 - xvw_create_commandbar() create a toolbox menu object
	 B.5.2 - Attributes of the Command Bar Object
	 B.5.3 - Complete Resource Set of the Command Bar Object
	 B.5.4 - Example Using the Command Bar Object

	 C - User Interface Components
	 C.1 - The ToolboxMenu Object
	 C.1.1 - xvw_create_toolboxmenu() create a toolbox menu object
	 C.1.2 - Attributes of the ToolboxMenu Object
	 C.1.3 - Complete Resource Set of the ToolboxMenu Object
	 C.1.4 - Example Using the ToolboxMenu Object

	 C.2 - The ToolboxList Object
	 C.2.1 - xvw_create_toolboxlist() create a toolbox list object
	 C.2.2 - Attributes of the ToolboxList Object
	 C.2.3 - Complete Resource Set of the ToolboxList Object
	 C.2.4 - Example Using the ToolboxList Object

	 C.3 - The FinderList Object
	 C.3.1 - xvw_create_finderlist() create a finder list object
	 C.3.2 - Attributes of the FinderList Object
	 C.3.3 - Complete Resource Set of the FinderList Object
	 C.3.4 - Example Using the FinderList Object

	 D - Hierarchy
	 D.1 - The Procedure Object
	 D.1.1 - xvw_create_procedure() create a procedure object
	 D.1.2 - Attributes of the Procedure Object
	 D.1.3 - Complete Resource Set of the Procedure Object

	 E - Control Flow
	 E.1 - The Conditional Object
	 E.1.1 - xvw_create_conditional() create a conditional object
	 E.1.2 - Attributes of the Conditional Object
	 E.1.3 - Complete Resource Set of the Conditional Object

	 E.2 - The Loop Object
	 E.2.1 - xvw_create_loop() create a loop object
	 E.2.2 - Attributes of the Loop Object
	 E.2.3 - Complete Resource Set of the Loop Object

	 11 - App-defaults
	 A - About app-defaults files
	 A.1 - GUI & Visual Object App-Defaults Files
	 A.2 - Application Specific App-Defaults Files
	 A.3 - Precedence for Scoping of App-defaults Files
	 A.4 - Creating Your Own App-Defaults files
	 A.5 - Application Interaction with App-Defaults Files
	 A.6 - Issues With Regard to Specification of Object Resources
	 A.6.1 - Inheritance & Class-Specific Resources
	 A.6.2 - Precedence for Inheritance of Objects
	 A.6.3 - Sub-Parts

	 A.7 - Syntax of the App-defaults File
	 A.8 - The Remainder of the Appendix

	 B - The Animate Object
	 C - The Area Object
	 D - The Axis Object
	 E - The Axis2D Object
	 F - The Browser Object
	 G - The Canvas Object
	 H - The Circle Object
	 I - The Color Object
	 J - The ColorCell Object
	 K - The Connection Object
	 L - The Console Object
	 M - The Date Object
	 N - The Double Object
	 O - The Error Object
	 P - The Float Object
	 Q - The Help Object
	 R - The Image Object
	 S - The ImageIcon Object
	 T - The Indicator Object
	 U - The Info Object
	 V - The InputFile Object
	 W - The InputOnly Object
	 X - The Integer Object
	 Y - The Label Object
	 Z - The Layout Object
	 AA - The Line Object
	 AB - The Marker Object
	 AC - The NotifyWindow Object
	 AD - The OutputFile Object
	 AE - The Palette Object
	 AF - The PanIcon Object
	 AG - The Pixmap Object
	 AH - The Plot2D Object
	 AI - The Plot3D Object
	 AJ - The Polyline Object
	 AK - The Position Object
	 AL - The PrintMapVal Object
	 AM - The PrintPixel Object
	 AN - The Pseudo Object
	 AO - The Rectangle Object
	 AP - The RootWindow Object
	 AQ - The RowCol Object
	 AR - The String Object
	 AS - The StringValue Object
	 AT - The TextDisplay Object
	 AU - The TextInput Object
	 AV - The TextString Object
	 AW - The Threshold Object
	 AX - The Timer Object
	 AY - The Viewport Object
	 AZ - The Warn Object
	 BA - The Zoom Object

